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Abstract

We present an iterative data augmentation
framework, which trains and searches for
an optimal ensemble and simultaneously
annotates new training data in a self-training
style. We apply this framework on two SIG-
MORPHON 2020 shared tasks: grapheme-
to-phoneme conversion and morphological
inflection. With very simple base models in
the ensemble, we rank the first and the fourth
in these two tasks. We show in the analysis
that our system works especially well on low-
resource languages. The system is available at
https://www.ims.uni-stuttgart.de/

en/institute/team/Yu-00010/.

1 Introduction

The vast majority of languages in the world have
very few annotated dataset available for training
natural language processing models, if at all. Deal-
ing with the low-resource languages has sparked
much interest in the NLP community (Garrette
et al., 2013; Agić et al., 2016; Zoph et al., 2016).

When annotation is difficult to obtain, data aug-
mentation is a common practice to increase training
data size with reasonable quality to feed to pow-
erful models (Ragni et al., 2014; Bergmanis et al.,
2017; Silfverberg et al., 2017). For example, the
data hallucination method by Anastasopoulos and
Neubig (2019) automatically creates non-existing
“words” to augment morphological inflection data,
which alleviates the label bias problem in the gen-
eration model. However, the data created by such
method can only help regularize the model, but
cannot be viewed as valid words of a language.

Orthogonal to the data augmentation approach,
another commonly used method to boost model
performance without changing the architecture is
ensembling, i.e., by training several models of the
same kind and selecting the output by majority
voting. It has been shown that a key to the success

of ensembling is the diversity of the base models
(Surdeanu and Manning, 2010), since models with
different inductive biases are less likely to make
the same mistake.

In this work, we pursue a combination of both
directions, by developing a framework to search
for the optimal ensemble and simultaneously an-
notate unlabeled data. The proposed method is an
iterative process, which uses an ensemble of hetero-
geneous models to select and annotate unlabeled
data based on the agreement of the ensemble, and
use the annotated data to train new models, which
are in turn potential members of the new ensem-
ble. The ensemble is a subset of all trained models
that maximizes the accuracy on the development
set, and we use a genetic algorithm to find such
combination of models.

This approach can be viewed as a type of self-
training (Yarowsky, 1995; Clark et al., 2003), but
instead of using the confidence of one model, we
use the agreement of many models to annotate new
data. The key difference is that the model diversity
in the ensemble can alleviate the confirmation bias
of typical self-training approaches.

We apply the framework on two of the SIGMOR-
PHON 2020 Shared Tasks: grapheme-to-phoneme
conversion (Gorman et al., 2020) and morphologi-
cal inflection (Vylomova et al., 2020). Our system
rank the first in the former and the fourth in the
latter.

While analyzing the contribution of each compo-
nent of our framework, we found that the data aug-
mentation method does not significantly improve
the results for languages with medium or large train-
ing data in the shared tasks, i.e., the advantage of
our system mainly comes from the massive ensem-
ble of a variety of base models. However, when
we simulate the low-resource scenario or consider
only the low-resource languages, the benefit of data
augmentation becomes prominent.

https://www.ims.uni-stuttgart.de/en/institute/team/Yu-00010/
https://www.ims.uni-stuttgart.de/en/institute/team/Yu-00010/


2 Ensemble Self-Training Framework

2.1 General Workflow
In this section we describe the details of our frame-
work. It is largely agnostic to the type of supervised
learning task, while in this work we apply it on two
sequence generation tasks: morphological inflec-
tion and grapheme-to-phoneme conversion. The
required component includes one or more types of
base models and large amount of unlabeled data.
Ideally, the base models should be simple and fast
to train with reasonable performance, and as di-
verse as possible, i.e., models with different archi-
tectures are better than the same architecture with
different random seeds.

The workflow is described in Algorithm 1. Ini-
tially, we have the original training data L0, unla-
beled data U , and several base model types T 1...k.
In each iteration n, there are two major steps: (1)
ensemble training and (2) data augmentation. In the
ensemble training step, we train each base model
type on the current training data Ln to obtain the
models m1...k

n , and add them into the model pool
(line 4-8). We then search for an optimal subset of
the models from the pool as the current ensemble,
based on its performance on the development set
(line 9). In the data augmentation step, we sample
a batch of unlabeled data (line 10), then use the
ensemble to predict and select a subset of the in-
stances based on the agreement among the models
(line 11). The selected data are then aggregated
into the training set for later iterations (line 12-13).

2.2 Ensemble Search
Simply using all the models as the ensemble would
be not only slow but also inaccurate, since too many
inferior models might even mislead the ensemble,
therefore searching for the optimal combination is
needed. However, an exact search is not feasible,
since the number of combinations grows exponen-
tially. We use the genetic algorithm for heteroge-
neous ensemble search largely following Haque
et al. (2016). In the preliminary experiments, the
genetic algorithm consistently finds better ensem-
bles than random sampling or using all models.

We use a binary encoding such as 0100101011
to represent an ensemble combination (denoted as
an individual in genetic algorithms), where each
bit encodes whether to use one particular model.

As we aim to maximizing the prediction accu-
racy of the ensemble, we define the fitness score of
an individual as the accuracy on the development

Algorithm 1 Ensemble Self-Training (EST)
1: function EST(L, U , T )

Require: labeled data L
Require: unlabeled data U
Require: tools T

2: Initial data L0 = L
3: Model pool M = ∅
4: for n : 0...N do
5: for tk ∈ T do
6: mk

n = TRAIN(tk, Ln)
7: M = M ∪ {mk

n}
8: end for
9: E = SEARCHENSEMBLE(M)

10: Sample u ∼ U
11: l = SELECTDATA(E, u)
12: Ln+1 = AGGREGATEDATA(Ln, l)
13: U = U − l
14: end for
15: return E, Lk

16: end function

set by the ensemble represented by the individual.
Initially, we generate 100 random individuals

into a pool, which is maintained at the size of 100.
Whenever a new individual enters the pool, the
individual with the lowest fitness score will be re-
moved.

Each new individual is created through three
steps: parent selection, crossover, and mutation.
Both parents are selected in a tournament style, in
which we sample 10 individuals from the pool, and
take the one with the highest fitness score. In the
crossover process, we take each bit randomly from
one parent with a rate of 60%, and 40% from the
other. In the mutation process, we flip each bit of
the child with a probability of 1%. To ensure the
efficiency of the ensemble, we also limit the num-
ber of models in the combination to 20: if a newly
evolved combination exceeds 20 models, we ran-
domly reduce the number to 20 before evaluating
the fitness.

In each search, we evolve 100,000 individuals,
and return the one with the highest fitness score.
Since the data size is relatively small, the ensemble
search procedure typically only takes a few sec-
onds.

2.3 Data Selection and Aggregation

In each iteration, we use the current optimal en-
semble to predict a batch of new data, and select a
subset as additional data to train models in the next



iteration.
There are various heuristics to select new data,

with two major principles to consider: (1) one
should prefer the instances with higher agreement
among the models, since they are more likely to be
correct; (2) instances with unanimous agreement
might be too trivial and does not provide much new
information to train the models.

To strike a balance between the two considera-
tions, we first rank the data by the agreement, but
only take at most half of the instances with unani-
mous agreement as new annotated data. Concretely,
we sample 20,000 instances to predict, and use at
most 3,600 instances as new data if their predic-
tions have over 80% agreement, among which, at
most 1,800 instances have 100% agreement. Note
that we chose the data size of 3,600 because it is
the training data size in the grapheme-to-phoneme
conversion task, and we used the same setting for
the morphological inflection task without tuning.

There are also different ways to aggregate the
new data. One could simply accumulate all the
selected data, resulting in much larger training data
in the later iterations, which might slow down the
training process and dilute the original data too
much. Alternatively, one could append only the se-
lected data from the current iteration to the original
data, which might limit the potential of the models.

Again, we took the middle path, in which we
keep half of all additional data from the previous it-
eration together with the selected data in the current
iteration. For example, there are 3600 additional in-
stances produced in iteration 0, 3600/2 + 3600 =
5400 in iteration 1, 5400/2 + 3600 = 6300 in
iteration 2, and the size eventually converges to
3600× 2 = 7200.

3 Grapheme-to-Phoneme Conversion

3.1 Task and Data

We first apply our framework on the grapheme-to-
phoneme conversion task (Gorman et al., 2020),
which includes 15 languages from the WikiPron
project (Lee et al., 2020) with a diverse typolog-
ical spectrum: Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Hindi (hin), Hungar-
ian (hun), Icelandic (ice), Korean (kor), Lithuanian
(lit), Modern Greek (gre), Adyghe (ady), Dutch
(dut), Japanese hiragana (jpn), Romanian (rum),
and Vietnamese (vie).

As preprocessing, we romanize the scripts of

Japanese and Korean,12 which show improvements
in preliminary experiments. The reason is that the
Japanese Hiragana and Korean Hangul characters
are both syllabic, in which one grapheme typically
corresponds to multiple phonemes, and by roman-
izing them (1) the alphabet size is reduced, and (2)
the length ratio of the source and target sequences
are much closer to 1:1, which empirically improve
the quality of the alignment.

As unlabeled data, we use word frequency lists,3

which are mostly extracted from OpenSubtitles (Li-
son and Tiedemann, 2016). For the two languages
we did not find in OpenSubtitles, Adyghe is ob-
tained from the corpus by Arkhangelskiy and Lan-
der (2016),4 and Georgian is obtained from several
text corpora.56

Since the word lists are automatically extracted
from various sources with different methods and
quality, we filter them by the alphabet of the train-
ing set of each language, and keep at most 100,000
most frequent words.

3.2 Models

As the framework desires the models to be as di-
verse as possible to maximize its benefit, we em-
ploy four different types of base models with dif-
ferent inductive biases.

The first type is the Finite-State-Transducer
(FST) baseline by Lee et al. (2020), based on the
pair n-gram model (Novak et al., 2016).

The other three types are all variants of Seq2Seq
models, where we use the same BiLSTM encoder
to encode the input grapheme sequence. The first
one is a vanilla Seq2Seq model with attention
(attn), similar to Luong et al. (2015), where the
decoder applies attention on the encoded input and
use the attended input vector to predict the output
phonemes.

The second one is a hard monotonic attention
model (mono), similar to Aharoni and Goldberg
(2017), where the decoder uses a pointer to select
the input vector to make a prediction: either produc-

1https://pypi.org/project/pykakasi/
2https://pypi.org/project/

hangul-romanize/
3https://github.com/hermitdave/

FrequencyWords/
4https://github.com/timarkh/

uniparser-grammar-adyghe
5https://github.com/akalongman/

geo-words
6Georgian is actually in OpenSubtitles, but we accidentally

missed it because of a confusion with the language code.

https://pypi.org/project/pykakasi/
https://pypi.org/project/hangul-romanize/
https://pypi.org/project/hangul-romanize/
https://github.com/hermitdave/FrequencyWords/
https://github.com/hermitdave/FrequencyWords/
https://github.com/timarkh/uniparser-grammar-adyghe
https://github.com/timarkh/uniparser-grammar-adyghe
https://github.com/akalongman/geo-words
https://github.com/akalongman/geo-words


ing a phoneme, or moving the pointer to the next
position. The monotonic alignment of the input
and output is obtained with the Chinese Restaurant
Process following Sudoh et al. (2013), which is pro-
vided in the baseline model of the SIGMORPHON
2016 Shared Task (Cotterell et al., 2016).

The third one is essentially a hybrid of hard
monotonic attention model and tagging model
(tag), i.e., for each grapheme we predict a short
sequence of phonemes that is aligned to it. It re-
lies on the same monotonic alignment for training.
This model is different from the previous one in
that it can potentially alleviate the error propaga-
tion problem, since the short sequences are non-
autoregressive and independent of each other, much
like tagging.

For each of the three models, we further cre-
ate a reversed variant, where we reverse the input
sequence and subsequently the output sequence.
On average, the best model types are the tagging
models of both directions.

Since we need to train many base models, we
keep their sizes at a minimal level: the LSTM en-
coder and decoder both have one layer, all dimen-
sions are 128, and no beam search is used. As a
result, each base model has about 0.3M parameters
and takes less than 10 minutes to train on a single
CPU core.

3.3 Experiments

With the ensemble self-training framework, we
train 14 base models at each iteration: FST mod-
els with 3-grams and 7-grams (fst-3, fst-7),
two instances for each direction of the attention
model (attn-l2r, attn-r2l), hard monotonic
model (mono-l2r, mono-r2l), and tagging
model (tag-l2r, tag-r2l).

Table 1 shows the number of iterations when
the optimal ensemble is found and the number of
models it contains, as well as the Word Error Rate
(WER) and Phone Error Rate (PER) on the test set,
in comparison to the Seq2Seq baseline provided by
the organizer. Generally, our system outperforms
the strong baseline in 13 out of 15 languages, and
the gap for Korean is especially large, due to the
romanization in our preprocessing. For three lan-
guages (Hungarian, Japanese, and Lithuanian), the
best ensemble is in the 0-th iteration, which means
the augmented data for them is not helpful at all.

Our ensemble system rank the first in terms of
both WER and PER on the test set, with an average

IMS Seq2Seq
#iter #model WER PER WER PER

ady 4 20 25.33 5.79 28.00 6.53
arm 5 20 12.67 2.94 14.67 3.49
bul 4 10 22.22 4.85 31.11 5.94
dut 2 13 13.56 2.36 16.44 2.94
fre 1 17 6.89 1.60 6.22 1.32
geo 6 20 24.89 4.57 26.44 5.14
gre 1 12 18.67 2.97 18.89 3.30
hin 1 20 5.11 1.20 6.67 1.47
hun 0 5 5.11 1.12 5.33 1.18
ice 5 20 9.33 2.04 10.00 2.36
jpn 0 6 5.33 1.26 7.56 1.79
kor 4 8 26.22 4.38 46.89 16.78
lit 0 5 20.00 3.63 19.11 3.55
rum 1 8 10.22 2.23 10.67 2.53
vie 5 20 1.56 0.48 4.67 1.52

AVG 3 14 13.81 2.76 16.84 3.99

Table 1: Evaluation on the test set of the grapheme-to-
phoneme conversion task, comparing our system with
the best performing seq2seq baseline. The first two
columns are the number of iterations when the best en-
semble is found and the number of base models in the
ensemble.

WER of 13.8 and PER of 2.76. However, a large
ensemble of simple models is not exactly compara-
ble with other single-model systems, and it is thus
difficult to derive a conclusion from the evaluation
alone. We are more interested in understanding
how much of the improvement comes from the en-
semble and its model diversity and how much from
the data augmentation process.

For this purpose, we run our framework in two
additional scenarios. In the first scenario, we
reduce the diversity of the models (denoted as
-diversity), where we only use the base model
tag-l2r and tag-r2l, which performs the best
among others, but keep the same number of models
trained in each iteration as before. In the second
scenario, we do not perform data augmentation (de-
noted as -augmentation), i.e., all models are trained
on the same original training data in each iteration.

Table 2 shows the WER on the development set
of the default scenario and the two experimental
scenarios. For each scenario, we show the average
WER of all models and the WER of the ensemble
from the initial iteration and the best iteration.

We can observe three trends in the table. (1) In
all scenarios, there is a large gap between the aver-



default -diversity -augment
average ensemble average ensemble average ensemble

init best init best init best init best init best init best

ady 28.9 27.7 22.4 21.6 26.6 27.2 22.9 22.2 28.7 28.1 22.7 20.9
arm 18.8 17.4 13.1 11.3 16.1 15.4 12.2 11.8 18.7 18.1 12.2 10.7
bul 36.8 36.2 25.3 20.0 35.5 35.5 27.6 23.8 37.3 36.1 24.2 18.7
dut 19.5 18.8 11.8 10.4 18.5 18.8 12.2 10.9 19.7 19.6 11.6 9.8
fre 15.1 15.7 6.0 5.6 13.2 13.6 6.7 6.2 15.6 15.2 7.1 5.1
geo 26.9 26.7 20.2 17.8 26.6 25.1 20.7 18.4 27.0 26.8 19.6 16.7
gre 20.1 18.4 13.8 12.7 17.3 16.8 12.7 11.3 19.9 19.8 12.9 11.8
hin 9.7 9.0 4.0 3.6 8.1 6.9 4.2 4.0 9.7 9.3 4.0 3.6
hun 4.5 4.5 2.0 2.0 4.0 3.9 2.4 2.2 4.7 4.7 2.4 2.4
ice 15.3 14.1 6.4 5.6 11.9 11.4 5.6 5.3 14.8 14.6 6.2 5.6
jpn 8.0 8.0 6.0 6.0 7.7 7.7 6.2 6.2 8.0 8.0 5.8 5.8
kor 25.9 23.4 16.2 14.4 20.9 20.7 16.9 16.0 25.9 25.6 16.4 14.2
lit 24.5 24.5 18.4 18.4 22.7 22.7 18.2 18.2 24.4 24.9 18.2 16.7
rum 14.6 13.7 10.2 9.8 12.2 12.2 10.0 9.3 14.4 14.5 9.8 8.7
vie 6.0 5.8 1.1 0.9 5.3 5.3 2.0 2.0 6.0 6.2 1.3 0.7

AVG 18.3 17.6 11.8 10.7 16.4 16.2 12.0 11.2 18.3 18.1 11.6 10.1

Table 2: WER on the development set in the three scenarios (default, reduced diversity, and without data aug-
mentation). In each scenario, we show the average model performance and the ensemble performance in the first
iteration and the best iteration.

age model performance and the ensemble perfor-
mance, which clearly demonstrates the benefit of
the ensemble. (2) In the -diversity scenario, the av-
erage model performance is better than the default
scenario, but the ensemble performance is worse
than the default scenario, which demonstrates the
importance of the model diversity. (3) The aver-
age model performance in the default scenario has
clear improvement as opposed to the random fluctu-
ation in the -augmentation scenario, which means
that the data augmentation can indeed benefit some
individual models. However, to our surprise and
disappointment, the ensemble performance of the
-augmentation scenario is even slightly better than
the default scenario, which casts a shadow over the
data augmentation method in this framework.

As our framework is designed for low-resource
languages, and the data size of 3,600 in the task
is already beyond low-resource, we therefore ex-
periment in a simulated low-resource scenario.7

For each language, we randomly sample 200 in-
stances as the new training data, while ensuring
that all graphemes and phonemes in the training

7Consider the Swadesh list (Swadesh, 1950) with only
100-200 basic concepts/words, which could be thought of as
a typical low-resource scenario. In the WikiPron collection,
more than 20% of the 165 languages have less than 200 words.

data appear at least once.
Table 3 shows the WER of the default and -

augment scenario in the low-resource experiment.
Similar to the previous experiment, the ensemble
greatly reduces errors of individual models. More
importantly, the individual models benefit signifi-
cantly from the augmented data (from 54.2 to 35.5),
and the final ensemble further reduces the error rate
to 25.2. The WER in the default scenario is much
better than the -augment scenario (25.2 vs 29.2),
which means that the data augmentation is indeed
beneficial when the training data is scarce.

4 Morphological Inflection

4.1 Task and Data

We also apply our framework on the morphologi-
cal inflection task (Vylomova et al., 2020), where
the input is a combination of lemmata and mor-
phological tags according to the UniMorph schema
(Sylak-Glassman et al., 2015), and the output is
the inflected word forms. There are 90 languages
with various data sizes, ranging from around 100
to 100,000.

As unlabeled data for the augmentation process,
we simply recombine the lemmata and morphologi-
cal tags of the same category in the training set (i.e.,



default -augment
average ensemble average ensemble
init best init best init best init best

ady 62.3 41.3 44.4 30.0 63.0 62.1 44.4 37.8
arm 42.6 30.2 28.0 22.9 42.5 41.9 28.9 23.3
bul 68.8 58.0 53.6 48.4 67.4 66.8 53.3 47.3
dut 64.9 37.8 45.6 27.6 64.7 63.2 43.1 32.4
fre 62.0 34.0 34.9 18.9 61.8 61.3 35.1 29.3
geo 40.5 34.4 29.8 26.0 40.6 39.6 30.4 24.7
gre 56.8 37.7 37.3 28.0 57.4 55.8 39.3 31.3
hin 53.8 22.2 32.2 12.7 53.5 52.8 33.8 24.4
hun 42.2 19.7 21.8 12.7 42.8 41.6 21.6 16.7
ice 71.1 51.1 53.8 42.9 73.6 70.4 55.8 49.8
jpn 41.4 16.5 19.8 11.1 42.1 40.4 21.3 15.6
kor 53.4 39.4 36.9 30.4 54.6 53.1 38.2 32.9
lit 66.3 51.8 49.1 38.4 67.4 65.9 48.7 39.8
rum 37.5 24.7 22.9 16.4 38.1 37.1 23.1 18.2
vie 50.3 33.4 23.8 11.1 50.6 49.3 21.6 14.4

AVG 54.2 35.5 35.6 25.2 54.7 53.4 35.9 29.2

Table 3: WER on the development set for the simulated
low-resource experiment in the scenarios with and with-
out data augmentation. In each scenario, we show the
average model performance and the ensemble perfor-
mance in the first iteration and the best iteration.

a verb lemma only combines with all morphologi-
cal tags for verbs), with a maximum size of 100,000
for each language. For many languages, however,
the recombination is as scarce as the original data
since they are from (almost) complete inflection
paradigms of a few lemmata. In total, we obtained
1,422,617 instances, which is slightly smaller than
the training set with 1,574,004 instances. Since
the additional data come directly from the original
training data, we consider it the restricted setting,
where no external data sources or cross-lingual
methods are used.

4.2 Models
Due to our late start in this task, we only imple-
mented two types of base models, paired with left-
to-right and right-to-left generation order. The first
type is a Seq2Seq model with soft attention, very
similar to the one in the grapheme-to-phoneme con-
version task, except that an additional BiLSTM is
used to encode the morphological tags. The second
type is a hard monotonic attention model, also sim-
ilar as before, but instead of using the alignment
with the Chinese Restaurant Process, we use Lev-
enshtein edit scripts to obtain the target sequence,

Model Accuracy

CULing-01-0 0.912
deepspin-02-1 0.909
uiuc-01-0 0.905
IMS-00-0 0.892

mono 0.858
trm 0.901
mono-aug 0.888
trm-aug 0.903

Table 4: Evaluation on the test set of the morphological
inflection task, comparing our system to three winning
systems and four baselines.

since the input and the output share the same al-
phabet. At each step, the model either outputs
a character from the alphabet, or copies the cur-
rently pointed input character, or advances the in-
put pointer to the next position. In total, we train 8
models per iteration, i.e., two models with different
random seeds for each variant. The hyperparam-
eters are largely the same as in the previous task,
and each model has about 0.5M parameters.

4.3 Experiments

Table 4 compares the average test accuracy between
our system (IMS-00-0) and the systems of the win-
ning teams as well as the baselines. The baselines
include a hard monotonic attention model with la-
tent alignment (Wu and Cotterell, 2019) and a care-
fully tuned transformer (Vaswani et al., 2017; Wu
et al., 2020), noted as mono and trm. They are ad-
ditionally trained with augmented data by Anasta-
sopoulos and Neubig (2019), noted as mono-aug
and trm-aug.

On average, our system ranks the fourth among
the participating teams and the third in the re-
stricted setting (without external data source or
cross-lingual methods). It outperforms the hard
monotonic attention baseline, but not the trans-
former baseline. More details on the systems and
their comparisons are described in Vylomova et al.
(2020). Compared to the previous task, we used
fewer base models, in terms of both number and
diversity, which partly explains the relatively lower
ranking.

In this task, the data size ranges across several
magnitude for different languages. We thus analyze
the performance difference of our system against
the two baselines with their own data augmentation
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Figure 1: Performance difference between our system
and the two baselines with data augmentation, with re-
spect to the training data size.

(mono-aug and trm-aug) with respect to the
original training data size, as illustrated in Figure 1.
We removed the trivial cases in which both models
achieved 100% accuracy.

Clearly, our system performs better for lan-
guages with smaller training data size, while losing
to the powerful baseline models when the data size
is large. This again demonstrates the benefit of our
framework for low-resource languages.

We also mark the major language families to see
whether they play a role in the performance differ-
ence, since different inductive biases might work
differently on particular language families. For
example, the right-to-left generation order might
work better on languages with inflectional prefixes.
However, we could not find any convincing pat-
terns regarding language families in the plot, i.e.,
there is not a language family in the data set where
our model always performs better or worse than the
baseline. The only exception is the Austronesian
family, where our system generally outperforms

the baselines, but they all have relatively small data
size, which is a more probable explanation.

Note that our augmentation method is theoreti-
cally orthogonal to the hallucination method (Anas-
tasopoulos and Neubig, 2019), and could be com-
bined to further improve the performance of the
baseline models for low-resource languages.

5 Conclusion

We present an ensemble self-training framework
and apply it on two sequence-to-sequence genera-
tion tasks: grapheme-to-phoneme conversion and
morphological inflection. Our framework includes
an improved self-training method by optimizing
and utilizing the ensemble to obtain more reliable
training data, which shows clear advantage on low-
resource languages. The optimal ensemble search
method with the genetic algorithm easily accom-
modates the inductive biases of different model
architectures for different languages.

As a potential future direction, we could incor-
porate the framework into the scenario of active
learning to reduce annotator workload, i.e., by sug-
gesting plausible predictions to minimize the need
of correction.
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