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Abstract
In this paper, we describe our three submis-
sions to the SIGMORPHON 2020 shared task
1 on grapheme-to-phoneme conversion for 15
languages. We experimented with a single
multilingual Transformer model. We observed
that the multilingual model achieves results
on par with our separately trained monolin-
gual models and is even able to avoid a few
of the errors made by the monolingual models.

1 Introduction
Grapheme-to-phoneme conversion is the task of
predicting the phonemic representation for a given
orthographic word, where a phoneme is the small-
est unit of sound which can distinguish one word
from another. In many languages, some phonemes
have different realizations depending on their con-
text, and these variants are called allophones.
While the task is about predicting phonemes and
not allophones, in fact most datasets (e.g., the
datasets for Hungarian, Bulgarian, and Armenian)
also contain allophones. However, since the distri-
bution of allophones conditioned on the context is
learnable, this is not an issue.
The shared task training data consists of 15 lan-

guages which have diverse phonologies, ranging
from tonal languages to languages with glottalized
consonants, and they are written in eight different
writing systems. The data comes from the English
version of Wiktionary. Each training set contains
3600 words, and each development and test set
contains 450 words. The official metrics for the
task are Word Error Rate (WER) and Phoneme Er-
ror Rate (PER).
A multilingual approach for grapheme-to-

phoneme conversion has been explored by Milde
et al. (2017). They propose a sequence-to-
sequence multilingual model that benefits from

training on additional phonetic representations for
the same language (which was not permitted in
our shared task).
The Transformer (Vaswani et al. 2017) with

its attention mechanism has been applied very
successfully to machine translation tasks, and it
was also used for grapheme-to-phoneme conver-
sion. Yolchuyeva et al. (2019) suggested using
a Transformer-based approach for grapheme-to-
phoneme conversion andYu et al. (2020) proposed
a multilingual Transformer model for languages
with different writing systems by employing byte-
level input representation.
In our submission to the shared task, we explore

the performance of a multilingual Transformer
model with augmented input representation which
can transduce a word from any language present
in the training data into its IPA representation.

2 Linguistic Background
2.1 IPA
The phonemic representation in this task uses the
International Phonetic Alphabet (IPA). Interest-
ingly, there is an issue with IPA which is lack of
“orthography”. This might seem surprising given
that the IPA aims at representing the pronunciation
of words with more rigor than typical orthogra-
phies. However, different levels of depth of anal-
ysis are possible with IPA, and this makes incon-
sistent use of symbols among annotators unavoid-
able. To give an example, Bulgarian exhibits a
voiceless coronal plosive /t/~/t̪/. The phoneme is
articulated as a dental plosive in Bulgarian. Some-
what randomly, the IPA provides an atomic sym-
bol for the voiceless alveolar plosive (/t/), but only
a composed symbol for the voiceless dental plo-
sive (/t̪/). In principle, /t̪/ would be the correct
representation for the phoneme in question, but
since there is no phonemic contrast between den-



tal and alveolar articulation in Bulgarian, a sim-
ple /t/ suffices to represent the voiceless coronal
plosive phoneme in Bulgarian. Hence, as is ex-
pected, the phoneme is not transcribed consistently
in the training data; while /t̪/ is used 1588 times,/t/
is applied 681 times. Similar issues are found
frequently for other phonemes, and for other lan-
guages.

2.2 Languages
In our monolingual baseline models trained with
the Transformer baseline published by the task or-
ganizers, the WER (PER) ranged from only 3.78
(0.66) for Hungarian up to 40.00 (16.38) for Ko-
rean. Seeing these huge differences in perfor-
mance, it seemed worth analyzing the difficulties
faced by the model for the three languages with
the worst WER, viz. Korean (40.00), Bulgarian
(30.67), and Georgian (28.44).

2.2.1 Georgian
We were particularly surprised to see Georgian
among the seemingly most difficult languages.
Georgian has a fully phonemic alphabet; each
character represents exactly one phoneme, and
each phoneme is represented by exactly one char-
acter (Hewitt 1995). Grapheme-to-phoneme con-
version (and phoneme-to-grapheme conversion)
for Georgian is thus a trivial task and can be done
in principle with 100% accuracy using a simple 1-
to-1 look-up table.
We actually implemented this look-up table, and

this allowed us to identify and quantify the is-
sues in the Georgian dataset. We found that there
are three phonemes that are each inconsistently
represented by two IPA symbols (and distributed
roughly 50/50): i~ɪ; x~χ; ɣ~ʁ. The difference be-
tween these symbols is neither phonemic nor allo-
phonic. Rather, it is caused by different annotators
using different representation for a given phoneme,
in line with the orthographic weakness of the IPA
outlined above in Section 2.1.
We reported these data inconsistencies,1 and we

prepared a consistent dataset produced with our
look-up table. Together with the organizers, we
planned to update the Georgian data directly on
Wiktionary and then re-retrieve the training data
from there. Unfortunately, bulk uploading to Wik-
tionary is not trivial, and it was not possible for
us to update the data before the task deadline. For

1https://github.com/sigmorphon/2020/issues/8

the current task, it means that the WER cannot be
substantially reduced for Georgian due to these in-
consistencies.

2.2.2 Bulgarian
Bulgarian exhibits vowel reduction in unstressed
syllables (similar phenomena are found, for in-
stance, in English, German, and Russian), which
leads to many allophones for vowels in unstressed
positions (Leafgren 2020). These allophones
should not be present in a purely phonemic tran-
scription, however they are in the given training
set. Furthermore, the pronunciation of a vowel in
Bulgarian depends on the position of stress, yet
Bulgarian word stress can fall on any syllable and
is not completely predictable. We experimented
with a self-written tool which predicts the stress
position in Bulgarian based on heuristics, however
the WER could only be decreased marginally us-
ing a stress-annotated training set, which is why
we abandoned this approach. Similar issues like
the ones discussed above for Georgian are present
in the Bulgarian training data, and these were also
discussed on GitHub.2 However, these issues are
somewhat more difficult to solve automatically
compared to Georgian.

2.2.3 Korean
Korean uses an alphabet that provides a symbol for
each consonant and for each vowel, yet it groups
symbols into square syllable blocks, which makes
it look somewhat close to Chinese and Japanese
writing, although it is much simpler. By default,
Unicode encodes Korean in syllable blocks and
not as single sounds, which results in a charac-
ter set comprising thousands of characters. Luck-
ily, Unicode also provides code points for the
single-sound characters (called Jamo), and sylla-
ble characters can easily be decomposed to single-
sound characters.3 We used hangul-jamo4 for
this decomposition. To give an example of the de-
composition, 가감 /k a̠ ɡ a̠ m/, is decomposed to
ㄱㅏㄱㅏㅁ . With this approach, we were able to
decrease theWER and PER of ourKorean baseline
Transformer model considerably: the WER was
reduced from 40.00 to 21.50, and the PER from
16.38 to 3.86. We use this preprocessing step for
Korean for all our submitted models.

2https://github.com/sigmorphon/2020/issues/9
3http://www.unicode.org/versions/Unicode8.0.

0/ch03.pdf
4https://github.com/jonghwanhyeon/

hangul-jamo

https://github.com/sigmorphon/2020/issues/8
https://github.com/sigmorphon/2020/issues/9
http://www.unicode.org/versions/Unicode8.0.0/ch03.pdf
http://www.unicode.org/versions/Unicode8.0.0/ch03.pdf
https://github.com/jonghwanhyeon/hangul-jamo
https://github.com/jonghwanhyeon/hangul-jamo


3 Approach
We trained a multilingual model which can trans-
duce a word in any of the 15 source languages
into its IPA representation. Multilingual models
can be of the types many-to-one, one-to-many, or
many-to-many. In our case, there are obviously
multiple languages on the source side. On the
target side, there is usually exactly one desired
phoneme sequence for a given source word. Su-
perficially, we thus have a many-to-one problem.
However, many character sequences exist in more
than one language. For instance, the character se-
quence <transformation> without further context
can be read as an Englishword or as a Frenchword,
and its pronunciation depends on the choice of lan-
guage (/tɹæns.fɔɹ.meɪ.ʃən/ vs. /tʁɑ̃s.fɔʁ.ma.sjɔ̃/).
This makes it a many-to-many problem for a sub-
set of the data.
The possibility of multiple desired sequences on

the target side for a given source word makes it
necessary to annotate the source words with the
desired language. In our approach, we prefix each
source word with its two-letter ISO language code,
followed by an underscore, e.g. 'fr_maison', or
'ka_ავტორი'. This is similar to the approach in
Johnson et al. (2017).
A side effect of our multilingual approach is that

the size of the training data is increased from 3600
to 54000 (15 x 3600) samples. Ideally, a model
might profit from this enlarged dataset, and lan-
guages can learn from each other. Given the vari-
ous source-side writing systems and differences in
phoneme sets across languages, we expect cross-
language learning to be somewhat limited.
The multilingual approach proposed here al-

lows for language-specific preprocessing where
needed. In our case, we only used a preprocess-
ing step for Korean, as outlined above in Section
2.2.3.

3.1 Model UZH-1
For our first submission, we used the Transformer
baseline5 provided by the organizers and exper-
imented with different hyperparameters. The
Transformer (Vaswani et al. 2017) is implemented
in Fairseq (Ott et al. 2019) and uses Adam
(Kingma and Ba 2015) for optimization and ReLU
as an activation function. It has 4 encoder and de-
coder layers with 4 attention heads each.

5https://github.com/sigmorphon/2020/tree/
master/task1/baselines/transformer

In our hyperparameter tuning, we experimented
with the following values: embedding dimension
{128, 256} and hidden size {512, 1024} for both
the encoder and the decoder, batch size {256, 512,
1024}, and dropout probability {0.1, 0.2, 0.3}.
The number of epochs is limited to 400.

Our submitted model has the largest possible
values for all tuned hyperparameters: embedding
dimensions of 256, hidden sizes of 1024, a batch
size of 1024, and a dropout probability of 0.3. Due
to limitations in available computation power, fur-
ther tuning with even larger hyperparameter val-
ues was not feasible for us.

3.2 Model UZH-2
For our second submission, we added extra lan-
guage data from 6 languages not addressed in the
task, viz. English, Italian, Portuguese, Czech,
Danish, and Macedonian. Some of these lan-
guages have rather small data sets available on
Wiktionary, therefore we added only 2400 training
samples per language, and 300 development sam-
ples each, which is two thirds of the data for the
other languages.
We selected the additional languages based on

our intuition regarding whether a language might
be useful for one or more of the 15 languages in
the task. An additional restriction was the fact
that large enough data sets are available mainly
for European languages. Of the selected addi-
tional languages, some are closely related to an-
other one from the official training set (e.g., Mace-
donian to Bulgarian, or, to a lesser degree, Dan-
ish to Dutch). Others have similar phonologies
(e.g., Spanish and Greek, or Czech and Hungar-
ian). In addition, some training sets (e.g., the one
for French) contain English loanwords whose ir-
regular pronunciation might be learned from addi-
tional English data.
The data was retrieved from Wiktionary using

WikiPron (Lee et al. 2020) and sampled randomly.
We used the same model architecture and the same
hyperparameter search space for this experiment
as in UZH-1, and the final model has the same hy-
perparameter values as UZH-1.

3.3 Model UZH-3
Our third submission is an ensemble model. It
uses the predictions of UZH-1 and UZH-2, and for
eachword it takes the higher probability prediction
from the two models.

https://github.com/sigmorphon/2020/tree/master/task1/baselines/transformer
https://github.com/sigmorphon/2020/tree/master/task1/baselines/transformer


4 Results

UZH-1 UZH-2 UZH-3
WER PER WER PER WER PER

arm 15.56 3.29 15.78 3.52 14.89 3.17
bul 32.89 6.48 30.00 5.59 30.22 5.77
fre 7.78 1.88 8.00 1.80 6.89 1.64
geo 26.44 5.00 28.00 5.11 26.22 4.97
gre 18.00 2.97 21.33 3.41 18.89 3.03
hin 6.89 1.58 7.78 2.16 6.00 1.43
hun 5.78 1.15 7.11 1.54 6.00 1.18
ice 11.78 2.39 12.89 2.78 11.78 2.46
kor 28.67 4.99 29.11 4.99 28.44 4.88
lit 27.33 4.69 28.44 4.84 27.11 4.61
ady 26.00 6.05 28.00 6.35 25.78 5.94
dut 17.78 3.27 21.56 3.94 18.67 3.42
jpn 9.33 2.46 6.00 1.58 6.00 1.54
rum 13.33 2.96 13.78 3.11 12.00 2.59
vie 8.44 2.91 6.67 2.62 6.22 2.46

macro
avg 17.07 3.47 17.63 3.56 16.34 3.27

Table 1: WER and PER of our 3 models for each lan-
guage and as macro-average on the official test set.

As can be seen from Table 1, our basic multi-
lingual system (UZH-1) achieved amacro-average
WER of 17.07 and a PER of 3.47 on the official
test set.
For the multilingual model with additional data

from six extra languages (UZH-2), we achieved
a macro-average WER of 17.63 and a PER of
3.56. While performance did not increase with
this approach, it also did not decrease dramatically,
which indicates that it would be possible to have
an even larger multilingual model for more than
15 languages without major performance loss.

More interestingly, even though the perfor-
mance of UZH-2 was slightly worse, the model
was able to resolve some of the errors made by
UZH-1, while at the same time introducing others.
We assume that there is indeed a cross-language
interference which can influence the result both
positively and negatively. We observed similar
behavior on the development set during our ex-
periments, which brought us to the idea of com-
bining the results of both systems to get the best
of both. Indeed, our ensemble model (UZH-3),
which takes the prediction with the higher prob-
ability from UZH-1 and UZH-2, was the best-
performing model among our submissions with a
macro-average WER of 16.34 and PER of 3.27.

5 Conclusion
While other submissions outperformed our mod-
els, our PER for UZH-3 is only 0.51 points higher
than that of the winning model (IMS). The differ-
ence inWER is slightly higher, with an increase of
2.53 points compared to the winning model. Over-
all, this shows that a single multilingual model can
achieve competitive results even in a setting with
highly unrelated languages, by simply prefixing
each word with its language code. In future work,
we like to explore further how cross-language in-
terference in a multilingual model influences per-
formance both positively and negatively.
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