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Abstract

The objective of this shared task is to produce
an inflected form of a word, given its lemma
and a set of tags describing the attributes of
the desired form. In this paper, we describe
a transformer-based model that uses a bidirec-
tional decoder to perform this task, and evalu-
ate its performance on the 90 languages and 18
language families used in this task.

1 Introduction

The world’s languages vary greatly in the richness
and complexity of their morphological inflection
systems. Indo-European languages such as Latin
or German tend to inflect words by adding suffixes
to a meaning-bearing root, while Austronesian lan-
guages like Malay or Tagalog use circumfixes to
change the forms of nouns and verbs. It is im-
portant that Natural Language Processing (NLP)
systems be able to generate inflected forms for a
variety of languages, which can be used in down-
stream tasks such as language modeling or machine
translation.

Task 0 of the SIGMORPHON 2020 Shared Task
(Vylomova et al., 2020) encourages the develop-
ment of morphological transduction models for a
variety of the world’s language families. Since the
task features such a diverse set of languages, it is
important to create a generalized model that is not
overly biased toward certain language typologies.

In this paper, we present the University of Illi-
nois submission to the task. We have modified
the baseline transformer model (Wu et al., 2020)
to use bidirectional decoding, following the work
in Zhou et al. (2019). We believe the additional
attention provided by the right-to-left decoding di-
rection improves performance on many of the lan-
guages in the dataset. Our model outperforms the
baseline transformer model on average rank and

is among the best performing submissions for this
year’s task.

2 Task

The objective of Task 0 of the SIGMORPHON
2020 Shared Task (Vylomova et al., 2020) is to
build a system that learns to generate morpholog-
ical inflections. The model takes a lemma and a
group of morphosyntactic tags as input and outputs
the word inflected in the desired form. The follow-
ing example comes from the German dataset:

predigen + V;IMP;SG;2
↓

predig

Here, we want to inflect predigen in the form speci-
fied by the tags V;IMP;SG;2, a 2nd person singular
imperative verb. The desired output is predig.

2.1 Dataset
The organizers of the task provide datasets for 90
languages in total. 45 languages are treated as
development languages − these languages span
the Austronesian, Germanic, Niger-Congo, Oto-
Manguean, and Uralic families, and were available
for several months. The remaining 45 languages
were released one week before the test sets and
are considered surprise languages − they span 16
families, 13 of which are not represented by the
development languages. The late release of these
languages encourages the development of models
that do not overly favor the development languages.

Each language has training and development
files that consist of lemmata, morphosyntactic tags
in the Unimorph Schema (Kirov et al., 2018), and
inflected forms. A test set was released for each lan-
guage one week before the deadline that contains
only lemmata and morphosyntactic tags. The lan-
guages vary widely in the amount of data provided:
for example, Finnish has approximately 100,000



training examples, while the Iranian language Tajik
has only 53 training examples. This large disparity
underscores the need for models that are not biased
toward certain datasets or languages.

3 Method

3.1 Motivation

Recent work on morphological inflection has
shown that an encoder-decoder framework using
transformers produces state-of-the-art results (Wu
et al., 2020). In our study, we have modified the
baseline transformer model to use bidirectional de-
coding – that is, the prediction of a character is
conditioned not only on the characters preceding it
but also on those following it.

This approach is linguistically motivated, be-
cause it is common for an inflectional affix to be
phonetically conditioned on the phonemes in its en-
vironment. For example, the underlying morpheme
ā (a long a) marking the Latin present indicative
can be expressed as the allomorph a (a short a)
when followed by a stop consonant: laudās (2nd
sg.) vs. laudat (3rd sg.). Kazakh exhibits regres-
sive assimilation when adding the third person pos-
sessive suffix: the lemma kitap changes to kitabı.
Here, the vowel in the suffix precipitates the voic-
ing of the previous consonant.

It is standard to use bidirectional encoding to
capture context in the source word (Wu and Cot-
terell, 2019; Wu et al., 2018), but we believe that a
bidirectional decoder can better capture phonetic
and orthographic dependencies in inflected forms.
To our knowledge, no such method has been ap-
plied to a morphological transduction task before.

3.2 Previous Work

Neural models for morphological inflection have
been studied extensively in previous SIGMOR-
PHON Shared Tasks (Cotterell et al., 2017, 2018;
McCarthy et al., 2019). Successful approaches in-
clude encoder-decoder frameworks using recurrent
neural networks (RNN’s) with attention (Cho et al.,
2014; Wu and Cotterell, 2019; Wu et al., 2018).
Hard monotonic attention has been particularly suc-
cessful, due to the relatively rigid copy-like nature
of inflection. Recent advances in the transformer
architecture (Vaswani et al., 2017) have allowed
transformer-based encoder-decoder models to be-
come successful for inflection tasks as well (Wu
et al., 2020). Indeed, the organizers provide us
with two baselines: an RNN-based model with hard

monotonic attention and a transformer baseline.

There has been some work on bidirectional de-
coding in the machine translation literature; how-
ever, we are unaware of any such work in mor-
phological transduction tasks. Zhang et al. (2018)
introduce an asynchronous bidirectional deocder
based on RNN’s; this approach first predicts the
target sequence in reverse and then attends over
this result to predict the target sequence left-to-
right. Zhou et al. (2019) use a transformer model
to predict both directions of the target sequence
simultaneously, producing state-of-the-art results
on translation tasks.

3.3 Model Architecture

Our model uses the technique of synchronous bidi-
rectional decoding (Zhou et al., 2019). In this ap-
proach, the decoder pursues predictions of the in-
flected form in both the left-to-right (L2R) and
right-to-left (R2L) directions simultaneously; that
is, the first and last letters of the form are predicted
first, then the second and second-to-last letters, and
so on. At each step of decoding, each direction
attends to the predictions of the other direction, so
that an entire L2R prediction has been conditioned
not only on itself but also on the R2L prediction. At
inference time, the highest probability prediction in
either direction is selected; it is reversed in the case
that an R2L prediction has the highest probability.

In our implementation, the lemma and mor-
phosyntactic tags are first embedded and encoded
using the transformer-based encoder of the baseline.
The decoder has been modified from the baseline in
two ways. First, the decoder operates on previous
L2R and R2L outputs in parallel at each time step.
All weight matrices are shared between the two
directions, and so this model has the same number
of parameters as the baseline. Thus, the decoder
makes both an L2R and an R2L prediction at each
time step.

The second modification is the replacement
of the multi-head intra-attention mechanism with
a “Synchronous Bidirectional Attention” (SBAtt)
mechanism, which allows each direction to attend
to the opposite direction. The SBAtt mechanism
is mostly the same as the standard intra-attention
mechanism, except that the dot product attention
has been replaced with ”Synchronous Bidirectional
Dot Product Attention”. This can be summarized
as follows:
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Here, Q, K, and V are the output hidden-state
matrices of the previous layer, and the forward and
backward arrows indicate the L2R and R2L matri-
ces respectively. Zhou et al. (2019) provides three
options for the Fusion function; given the empiri-
cal results of their study, we have used nonlinear
interpolation in our implementation:
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)
We perform inference with a modified beam

search. The algorithm tracks the k best L2R hy-
potheses and the k best R2L hypotheses. At each
time step, the ith best L2R hypothesis is paired with
the ith best R2L hypothesis, and these are fed to the
decoder, which makes an L2R prediction and an
R2L prediction. In the end, we select the hypoth-
esis with the highest probability to length ratio; if
an R2L hypothesis is selected, it is reversed before
returning it.

3.4 Training & Model Configuration
Given training examples {x(i), y(i)}Ni=1, the model
is trained to maximize the likelihood of the training
data, accounting for both L2R and R2L probabili-
ties:
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1
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We train the model to minimize the negative
log-likelihood loss function with label smooth-
ing (Szegedy et al., 2016). We use an Adam op-
timizer with β1 = 0.9 and β2 = 0.98. We em-
ploy a warmup-decay strategy for the learning rate
as described in Vaswani et al. (2017) using 4000
warmup steps and initial learning rate of 0.001.
Furthermore, special start-of-sentence tags 〈l2r〉
and 〈r2l〉 are used as the input to the decoder at the
first step. A shared end-of-sentence token is used
for both directions.

We keep most hyperparameters fixed for all lan-
guages in the dataset and train a separate model for
each language. We use a batch size of 150, dropout
of 0.3, embedding dimension of 256, maximum
decoding length of 128, and gradient maximum `2
of 1.0. We tune the number of layers, the num-
ber of attention heads, the hidden dimension size,
the label smoothing parameter λsmooth, and the lin-
ear interpolation parameter for the Fusion function
λfusion. The selection of these hyperparameters is
described in Section 3.5.

Models were trained for 50,000 steps, or until
accuracy on the development set flattened. In some
cases, the accuracy curve was still rising, so some
languages were trained to around 100,000 steps.
We choose the model checkpoint with the highest
development set accuracy to be used on the test
data.

3.5 Hyperparameter Selection

We train a separate model for each language in the
dataset and choose the hyperparameters by fam-
ily. We perform a grid search for two languages in
each family and select the best combination of hy-
perparameters based on accuracy on both of these
languages. Where possible, we try to select two
languages from different genera within a family,
and in some families there is only one language
present in the dataset. After selecting the optimal
hyperparameters based on these results, we train
individual models on each language in the family.

The hyperparameters we consider in our grid
search are as follows:

• Num. Layers ∈ {4, 6}
• Num. Heads ∈ {4, 8}
• Hidden dimension ∈ {512, 1024}
• λsmooth ∈ {0.0, 0.1}
• λfusion ∈ {0.1, 0.5}

We chose these hyperparameters because they ap-
peared to cause variation in performance in our
initial experiments. After tuning the development
languages, it became clear that setting λfusion to 0.5
almost always degraded performance, and so this
was left out of the hyperparameter search on the
surprise languages. Setting λfusion = 0.1 is con-
sistent with the experimental results in Zhou et al.
(2019) on machine translation datasets. Table 3 in
Appendix A.1 shows the hyperparameters chosen
for each family.

There are some cases in which the languages
used for hyperparameter tuning achieve better per-



Family Accuracy Edit-Distance
MONO TRM BI-TRM MONO TRM BI-TRM

Afro-Asiatic 92.93 95.67 96.37 0.11 0.05 0.05
Algic 67.20 68.70 70.30 1.26 1.20 1.16

Australian 61.40 90.00 87.80 0.92 0.27 0.26
Austronesian 77.66 81.28 82.30 0.58 0.44 0.41

Dravidian 86.05 87.10 85.30 0.48 0.46 0.54
Germanic 86.88 88.00 87.38 0.30 0.23 0.25

Indo-Aryan 97.78 98.02 98.18 0.05 0.05 0.04
Iranian 63.00 82.50 82.53 1.04 0.42 0.46

Niger-Congo 97.72 97.72 97.87 0.04 0.04 0.03
Nilo-Sahan 0.00 87.50 100.00 2.88 0.19 0.00

Oto-Manguean 82.71 86.59 87.49 0.49 0.32 0.28
Romance 95.51 99.25 98.72 0.12 0.02 0.03

Sino-Tibetan 83.20 84.40 84.40 0.22 0.20 0.21
Siouan 92.90 95.60 94.90 0.16 0.08 0.10

Tungusic 55.30 58.60 58.30 1.20 1.06 1.09
Turkic 95.33 95.96 95.80 0.13 0.10 0.11
Uralic 83.21 88.34 88.18 0.39 0.29 0.28

Uto-Aztecan 76.30 80.80 82.50 0.49 0.41 0.39

Table 1: Macro-averages of accuracy and edit distance by language family. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional
decoder.

formance with hyperparameters other than those
selected for the family. In these cases, we used the
best-performing hyperparameters found during the
grid search. Table 4 in Appendix A.1 presents the
hyperparameters used for these languages.

4 Experimental Results

Table 2 shows the number of languages on which
our model is equal to or outperforms the baseline.

Acc. Avg. Edit Dist.
≥ > ≤ <

Development 27 18 30 14
Surprise 29 13 33 15

Table 2: The number of languages (out of 45) on which
our model equals or outperforms (≥ and ≤) or strictly
outperforms (> and <) the best of the two neural base-
line models. It should be noted that on 5 of the de-
velopment languages and 7 of the surprise languages,
the baseline achieves perfect or near-perfect accuracy,
making these languages impossible to outperform.

It is clear that by either metric, our model equals or
outperforms the baseline on more than half of the
languages, demonstrating that our model generally
does not perform worse than the baseline.

Table 1 shows macro-averages of accuracy and
edit distance by language family. For both metrics,
our model outperforms the baseline transformer on
9 of the 18 language families and equals it on only
one family. Interestingly, the two metrics do not

agree on which families our model is best; when
considering either metric, our model outperforms
the baseline on 12 of the families.

Tables 5 and 6 in Appendix A.2 present full
results on every language in the dataset. It is inter-
esting to consider the L2R column, which indicates
the percentage of test examples on which an L2R
hypothesis was selected over an R2L hypothesis.
There is considerable spread in the values of this
column; this demonstrates that some languages
strongly prefer one direction over the other, while
others do not favor one direction in particular. It is
important to remember that even though the infer-
ence algorithm returns only the best L2R or R2L
hypothesis, the chosen direction is conditioned on
the opposite direction; therefore, a language that
appears to strongly prefer one direction may still
gain important insight from the opposite direction.

5 Conclusion & Future Work

The promising results of our experiments demon-
strate that some languages may be amenable to
bidirectional decoding; however, more investiga-
tion is required to fully understand the merits of
such an approach. For example, our results show
that some languages strongly favor L2R or R2L
hypotheses while others are less preferential. We
would like to determine if there are particular lin-
guistic features that make one direction more valu-
able than the other − for example, do inflected
forms with suffixes prefer L2R decoding while in-



flected forms with prefixes favor R2L decoding?
We propose performing this analysis by exploring
correlations with linguistic features in the WALS
database (Dryer and Haspelmath, 2013).

We would also like to investigate how often each
direction produces the correct form, as well as the
percentage of examples on which the two directions
agree with each other. A high disagreement could
indicate a higher value in one direction with respect
to the other for a particular language. It would
also be informative to compare the bidirectional
decoding approach with a purely R2L transformer
baseline, in addition to the L2R baseline provided
by the organizers.

We also suspect that the bidirectional beam
search algorithm can be improved if the hypothe-
ses in one direction are paired with each of the
hypotheses in the opposite direction when fed to
the decoder at each time step. Furthermore, once
the halfway-point of the target form is passed in the
decoding, we should expect lots of overlap between
the L2R and R2L forms. We would like to see if
this information can be used to join the L2R and
R2L predictions to produce a better inflected form.

In initial experiments we noticed that on some
languages the bidirectional decoding model con-
verges in considerably fewer epochs than the base-
line transformer model, despite the same number of
parameters. We want to fully investigate this phe-
nomenon because, if it holds for many languages, it
means that the model can gain insight more quickly
with both directions than with just one.

Finally, in this work our models were trained
from scratch on each individual language. We
would like to investigate multilingual approaches
by training separate models on individual language
families or a single model for every involved lan-
guage. In these ways, we hope to demonstrate the
merits of bidirectional decoding and its implica-
tions for a morphological transduction task.
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Family Languages # Layers Hidden Size # Heads λsmooth

Afro-Asiatic Oromo 6 512 4 0.0Syriac

Algic Cree 4 1024 4 0.0

Australian Murrinh-Patha 6 512 4 0.1

Austronesian Maori 6 1024 4 0.1Tagalog

Germanic Old English 4 1024 8 0.0Norwegian Bokmål

Indo-Ayran Sanskrit 4 512 8 0.0Bengali

Iranian Persian 4 1024 4 0.0Pashto

Niger-Congo Luganda 4 1024 4 0.0Zulu

Nilo-Sahan Zarma 4 1024 4 0.0

Oto-Manguean Yaitepec Chatino 4 1024 4 0.1Chichimeca-Jonaz

Romance Asturian 6 512 8 0.0Ladin

Sino-Tibetan Tibetan 6 1024 8 0.1

Siouan Dakota 4 1024 8 0.0

Tungusic Evenki 4 1024 4 0.1

Turkic Kazakh 4 1024 4 0.0Uyghur

Uralic Moksha 4 512 4 0.0Votic

Uto-Aztecan O’odham 6 1024 4 0.1

Table 3: Selected hyperparameters by family. The “Languages” column indicates the languages we used for
selecting the hyperparameters. The Dravidian family is not present, since it has exactly two languages; the hyper-
parameters for these languages can be seen in Table 4.

Family Languages # Layers Hidden Size # Heads λsmooth

Afro-Asiatic Oromo 4 512 4 0.0
Austronesian Tagalog 6 1024 8 0.0
Dravidian Kannada 4 1024 8 0.1
Dravidian Telugu 4 1024 4 0.0
Germanic Old English 4 512 8 0.0
Oto-Manguean Chichimeca-Jonaz 6 1024 8 0.1
Uralic Votic 6 512 8 0.0

Table 4: Selected hyperparameters for certain languages on which we performed a grid search. These languages
use different hyperparameters than their corresponding families, shown in Table 3, due to the fact that a more
optimal configuration was discovered.



A.2 Complete Results Tables
In this section we show full results on each language.

Family Language Accuracy Edit Distance L2R
MONO TRM BI-TRM MONO TRM BI-TRM

Austronesian

Cebuano 83.80 83.80 87.40 0.31 0.33 0.26 57.66
Hiligaynon 92.40 97.90 96.60 0.22 0.09 0.10 26.47

Maori 47.60 52.40 52.40 1.10 1.02 0.95 52.38
Malagasy 99.20 100 100 0.01 0 0 9.45
Tagalog 65.30 72.30 75.10 1.27 0.78 0.73 33.89

Germanic

Old English 75.80 79.10 78.40 0.44 0.37 0.38 77.41
Danish 74.60 76.30 73.00 0.60 0.25 0.29 93.92
German 98.50 97.70 98.00 0.06 0.03 0.02 95.18
English 96.60 96.90 96.90 0.10 0.06 0.06 89.91

North Frisian 86.10 87.90 87.60 0.40 0.39 0.42 54.30
Middle High German 90.80 91.50 92.90 0.17 0.11 0.11 82.98

Icelandic 97.10 97.00 97.60 0.06 0.07 0.04 88.79
Dutch 98.90 99.00 99.50 0.02 0.02 0.01 79.48

Norwegian Bokmål 76.90 77.30 74.80 0.47 0.46 0.51 95.20
Swedish 98.80 98.70 99.00 0.08 0.02 0.02 92.04

Niger-Congo

Akan 100 100 99.90 0 0 0.00 67.23
Gã 100 97.60 97.00 0 0.04 0.05 52.66

Kongo 98.70 98.10 98.70 0.01 0.03 0.01 78.85
Lingala 100 100 100 0 0 0 67.39
Luganda 90.00 91.20 92.80 0.17 0.13 0.11 46.47
Chewa 100 100 100 0 0 0 98.01
Sotho 100 98.00 98.00 0 0.03 0.03 91.92

Swahili 100 100 100 0 0 0 72.64
Zulu 88.50 92.30 92.30 0.19 0.13 0.13 43.59

Oto-Manguean

San Pedro Amuzgos Amuzgo 93.50 94.70 95.20 0.17 0.13 0.12 21.12
Eastern Highland Chatino 78.70 91.40 91.80 0.39 0.15 0.16 22.14

Tlatepuzco Chinantec 89.00 91.60 92.30 0.16 0.12 0.12 64.64
Yaitepec Chatino 45.90 61.20 62.50 2.28 1.00 0.97 63.71

Zenzontepec Chatino 79.30 79.70 84.60 0.44 0.49 0.33 60.33
Mezquital Otomi 99.10 99.00 99.10 0.01 0.01 0.01 32.13

Sierra Otomi 97.90 98.20 98.00 0.06 0.05 0.05 82.91
Chichimeca-Jonaz 74.60 74.50 74.20 0.59 0.60 0.57 63.96
Yoloxóchitl Mixtec 90.70 91.00 91.70 0.23 0.22 0.16 69.33

Chichicapan Zapotec 78.40 84.60 85.50 0.55 0.39 0.32 75.44

Uralic

Estonian 95.10 95.60 95.20 0.19 0.17 0.18 68.04
Finnish 99.60 99.60 99.70 0.02 0.01 0.01 62.97
Ingrian 68.80 87.10 87.50 0.60 0.24 0.23 86.16

Karelian 99.30 99.30 99.50 0.04 0.01 0.01 50.79
Livonian 92.50 96.40 95.50 0.13 0.06 0.07 52.24
Moksha 92.80 93.90 93.60 0.24 0.18 0.19 81.11

Meadow Mari 93.30 92.90 92.60 0.19 0.15 0.16 85.81
Erzya 93.60 94.50 94.10 0.21 0.17 0.18 90.65

Northern Sami 99.60 99.60 99.70 0.01 0.01 0.01 69.86
Veps 82.70 84.80 83.30 0.45 0.25 0.27 84.56
Votic 69.40 86.10 84.30 0.49 0.21 0.24 51.25

Table 5: Results for individual languages in the development language set. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional
decoder. The L2R column shows the percentage of words in each language for which our model selects a left-to-
right hypothesis as its final result. It should be noted that this column really indicates a “forwardness” percentage,
as languages with a right-to-left orthography are processed in a right-to-left manner.



Family Language Accuracy Edit Distance L2R
MONO TRM BI-TRM MONO TRM BI-TRM

Afro-Asiatic
Maltese 88.70 97.20 96.60 0.22 0.05 0.05 67.99
Oromo 98.30 99.00 98.00 0.03 0.02 0.04 30.86
Syriac 91.80 90.80 94.50 0.08 0.09 0.06 70.07

Algic Cree 67.20 68.70 70.30 1.26 1.20 1.16 69.34

Australian Murrinh-Patha 61.40 90.00 87.80 0.92 0.27 0.26 63.06

Dravidian Kannada 77.30 78.30 76.10 0.70 0.67 0.76 60.15
Telugu 94.80 95.90 94.50 0.25 0.24 0.32 42.49

Germanic
Middle Low German 60.60 63.50 58.40 1.03 0.84 1.10 52.16

Swiss German 90.10 92.70 93.20 0.18 0.11 0.10 68.83
Norwegian Nynorsk 84.60 86.40 86.60 0.24 0.21 0.20 85.76

Indo-Aryan

Bengali 98.80 99.40 99.90 0.03 0.05 0.00 93.54
Hindi 100 100 100 0 0 0 75.07

Sanskrit 92.90 93.40 93.40 0.16 0.15 0.14 65.77
Urdu 99.40 99.30 99.40 0.01 0.01 0.01 88.62

Iranian
Persian 100 100 99.90 0 0 0.00 45.26
Pashto 89.00 91.20 91.40 0.30 0.25 0.25 62.85
Tajik 0.00 56.30 56.30 2.81 1.00 1.12 75.00

Niger-Congo Shona 100 100 100 0 0 0 85.31

Nilo-Sahan Zarma 0.00 87.50 100 2.88 0.19 0 43.75

Romance

Asturian 98.50 99.40 99.30 0.03 0.01 0.01 46.88
Catalan 99.60 99.80 99.80 0.01 0.00 0.00 84.35

Middle French 99.50 99.80 99.80 0.01 0.00 0.00 83.48
Friulian 97.70 99.80 99.70 0.03 0.00 0.00 66.11
Galician 99.70 99.80 99.80 0.01 0.01 0.01 80.65

Ladin 99.00 99.50 99.50 0.02 0.01 0.01 61.38
Venetian 99.50 99.80 99.70 0.01 0.01 0.00 52.60

Anglo-Norman 70.60 96.10 92.20 0.82 0.10 0.18 60.78

Sino-Tibetan Tibetan 83.20 84.40 84.40 0.22 0.20 0.21 37.39

Siouan Dakota 92.90 95.60 94.90 0.16 0.08 0.10 71.20

Tungusic Evenki 55.30 58.60 58.30 1.20 1.06 1.09 65.55

Turkic

Azerbaijani 79.50 82.20 81.90 0.42 0.34 0.34 87.70
Bashkir 99.60 99.80 99.80 0.01 0.00 0.00 69.80

Crimean Tatar 98.80 99.10 99.30 0.10 0.01 0.01 78.05
Kazakh 97.40 97.90 98.00 0.15 0.12 0.11 63.46
Kyrgyz 97.90 98.30 98.80 0.04 0.03 0.02 67.95
Khakas 99.20 99.60 99.60 0.01 0.00 0.01 81.67

Turkmen 86.50 87.40 85.60 0.45 0.42 0.50 82.09
Uyghur 99.50 99.50 99.70 0.01 0.01 0.00 48.17
Uzbek 99.60 99.80 99.50 0.01 0.01 0.02 67.58

Uralic

Komi-Zyrian 96.30 96.90 96.90 0.11 0.07 0.07 75.61
Ludic 24.10 32.90 32.90 2.14 2.35 2.13 68.29
Livvi 94.50 94.30 94.50 0.14 0.09 0.09 82.53

Udmurt 97.80 98.40 98.40 0.06 0.03 0.03 74.02
Võro 32.00 61.20 63.10 1.27 0.66 0.62 63.11

Uto-Aztecan O’odham 76.30 80.80 82.50 0.49 0.41 0.39 62.42

Table 6: Results for individual languages in the surprise language set. MONO refers to the hard monotonic baseline,
TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional decoder. The
L2R column shows the percentage of words in each language for which our model selects a left-to-right hypothesis
as its final result. It should be noted that this column really indicates a “forwardness” percentage, as languages
with a right-to-left orthography are processed in a right-to-left manner.


