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Abstract

The paper describes the University of Mel-
bourne’s submission to the SIGMORPHON
2020 Shared Task 0: Typologically Diverse
Morphological Inflection. Our team submit-
ted three systems in total, two neural and one
non-neural. Our analysis of systems’ perfor-
mance shows positive effects of newly intro-
duced data hallucination technique that we em-
ployed in one of neural systems, especially in
low-resource scenarios. A non-neural system
based on observed inflection patterns shows
optimistic results even in its simple implemen-
tation (>75% accuracy for 50% of languages).
With possible improvement within the same
modeling principle, accuracy might grow to
values above 90%.

1 Introduction

According to WALS database 80% of the world’s
languages morphologically mark verb tense and
65% mark grammatical case (Dryer et al., 2005).
Still, until recently most research in natural lan-
guage processing was focused on a few well-
documented languages with modest amount of
morphological marking. A great variety of typo-
logically diverse low-resource languages were left
outside of NLP investigation and modeling. At
the same time, neural systems outperformed non-
neural ones onmany benchmarks(cite) while being
evaluated on a limited (and often not typologically
representative) sample of languages. Nevertheless,
some of such systems or architectures were stated
as “universal”. But are they universal? How well
models trained a certain sample of language fam-
ilies can generalize outside of it? For instance, a
model trained on Indo-European languages might
be biased towards suffixing and will be working
less well on languages that use infixing or prefix-
ing. The SIGMORPHON 2020 Shared task 0 (“Ty-
pologically diverse morphological inflection”; Vy-

lomova et al. (2020)) aims at evaluation of the gen-
eralization ability of models. It continues recent
trend of increasing linguistic diversity: starting
with 10 well-documented languages in Cotterell
et al. (2016) up to 103 in Cotterell et al. (2018).
These shared tasks demonstrated that neural mod-
els outperform non-neural ones but generally strug-
gle in low-resource settings. Therefore, the 2019
Shared Task focused on cross-lingual transfer (Mc-
Carthy et al., 2019) and explored transfer of mor-
phological information from a high-resource to a
low-resource language. In this paper, we describe
three models submitted to the shared task 0. We
investigate both generalization ability of models
and their performance in low-resource languages.
We propose a variation of data hallucination tech-
nique that significantly improves the results of neu-
ral models in low-resource settings.

2 Task Description

The task was organized in three stages: develop-
ment, generalization and evaluation. In the devel-
opment stage participants were provided with ini-
tial set of 45 development languages that were used
to develop their systems. In the next stage, gener-
alization, an extra and more diverse set of 45 lan-
guages was released, and participants were asked
to fine-tune and optimize their systems on these
languages. In both stages, only training and devel-
opment datasets were released. Test splits for both
development and generalization languages were
provided in the final, evaluation, stage.
Systems were then evaluated and ranked based

on the test set predictions.

3 Data

3.1 Data Format
All shared task data are in UTF-8 and follow
UniMorph annotation schema (Sylak-Glassman,



2016). Training and developments samples con-
sist of a lemma, an inflected (target) form, and its
morphosyntactic description (tags). Test samples
omit the target form.

3.2 Languages
Forty-five languages representing Austronesian,
Niger-Congo, Oto-Manguean, Uralic and Indo-
European language families were provided in
the development stage. Another forty-five (sur-
prise) languages from Afro-Asiatic, Algic, Altaic1,
Dravidian, Indo-European, Niger-Congo, Sino-
Tibetan, Siouan, Songhay, Southern Daly, Uralic,
and Uto-Aztecan families were provided in the
generalization phase one week before the evalua-
tion phase started. Importantly, the dataset sizes
are highly imbalanced, ranging from tens of thou-
sand of samples in some Uralic languages to a few
hundreds in the Niger-Congo family.

4 Baseline Systems

Two types of baseline systems were provided: neu-
ral and non-neural. The non-neural baseline was
essentially the same as in previous years’ tasks
(Cotterell et al., 2017, 2018). More specifically,
it first extracts possible lemma–form alignments
and associates themwith corresponding target tags,
then majority classifier chooses the most frequent
transformation and applies it to a given lemma.
The neural baselines include a hard monotonic

attention model (Wu and Cotterell, 2019) and
a character level transformer (Wu et al., 2020).
Both were trained in monolingual and multilingual
modes. Organizers also provide a variation of the
model that uses data hallucination technique from
Anastasopoulos and Neubig (2019) to improve per-
formance in low-resource languages.

5 Evaluation

The systems were evaluated in terms of test
accuracy and Levenstein distance between pre-
dicted and gold forms. Unlike in earlier shared
tasks where systems were ranked based on macro-
averaging, here systems were ranked based on sta-
tistical significance of differences in their perfor-
mance.

6 System Description

In terms of the shared task, we experimented with
three systems, two neural and one non-neural. Sub-

1Tungusic and Turkic

sections below provide a short description of each.

6.1 A non-neural system based on differently
refined alignment patterns

First, we implemented a non-neural system
(flexica01) where possible patterns of lemma-
to-inflected form transformation are generated di-
rectly by the following simple process:
1) We find all maximal continuous matches

between lemma and inflected form; while doing
this, we start with the longest possible match and
then find matches across the remaining unmatched
fragments, recursively. We replace the matches
found with groups denoted as \number, like
in regular expression syntax. Swapped order of
groups in inflected forms is allowed. For the
simplicity of implementation, we assumed that the
number of group is increasing along the lemma
word. If multiple matches of the same group
lengths are possible for a given lemma - inflection
pair, we produce all the respective transformations.
However, for the vast majority of samples only a
single variant is produced at this stage.
For example, for the past tense of “to
understand”:
understand → understood
we extract the following transformation rule:
\0an\1 → \0oo\1,
where \0=underst and \1=d are groups.
Group substitutions are not stored leaving a trans-
formation as abstract as possible. However, some
statistics about group content is used to evaluate
the confidence of substitution (see below).
2) Starting with previously generated trans-

formation pattern(s) of maximal abstraction,
we generate a set of patterns more specific
to a given training word by treating a limited
number (0..ConcreteLetterLimit, where
ConcreteLetterLimit is a hyperparameter)
of characters as concrete (i.e. standing out-
side any group). For our previous example
given ConcreteLetterLimit = 1 we would
finally produce the following set of matching
transformations: \0an\1 → \0oo\1;
u\0an\1 → u\0oo\1; \0n\1an\2
→ \0n\1oo\2, ... (3 more),
\0s\1an\2 → \0s\1oo\2, \0tan\1
→ \0too\1, \0and → \0ood.
All patterns generated for training samples are

stored in a trie, which is separate for each combi-
nation of grammatical features. The resulting set



of tries acts as a model.2 At prediction phase, a
multi-variant search against a given lemma is at-
tempted over the trie for a respective grammatical
tag combination. Here, multi-variance means that
the search procedure both allowswildcards for pos-
sible groups and concrete characters to be matched
against. After the search completes, all the candi-
date transformations found are then sorted by their
associated score in order to find the best fit. In the
version used to produce prediction submitted to the
contest, the score was based on the following three
components:

1. A (squashed) frequency f of transformation
occurrence in a training set;

2. The diversity d of marginal (the first one
and the last one) letters in groups as they
occurred in different fits of a given transfor-
mation found in the training set. To grasp
the underlying idea, take, for example, a \0
→ \0s transformation producing plural
nouns in English that is considered as highly
confident for any possible \0 value because
\0 was observed to match various strings
starting and ending with many different
letters in a training set. In contrast, \0a\1
→ \0oo\1 matches a very limited set
of examples such as stand→stood,
understand→understood, where
the last character of \0 is always 'd' and
the first character of \1 is 'n'. Such a
poor diversity of characters should signal
the predictor that the transformation pattern
is not likely to be usable at different group
values and it may be better to focus at more
specific transformation patterns instead.
Technically, we counted d as a product of the
number of distinct characters over all start
and end positions of groups. Still, if we have
an exact match between currently considered
substitution letter and one observed at the
same position in a training sample, we
consider this position exempt from scrutiny
by assuming it as having a high “effective”
diversity (currently, of 10).

3. Specificity s which here means the number
2To simplify the implementation, a transformation pattern

was stored as a mapping between two plain strings, one for
the lemma and another one for the inflected form. Group ref-
erences were represented by special characters added to the
alphabet.

of concrete characters in the pattern (without
counting characters falling into groups).

In the submitted version, the score was calculated
by the following empirical formula:

G =
1

2
log2 f + 6 log2 d+ 12s (1)

Note that in contrast to a conceptually similar
approach proposed by Hulden et al. (2014), we
didn’t encourage the most general paradigms. In-
stead, we used a trade-off criterion that prefers bet-
ter confidence but lower amount of abstraction in
patterns. Also, we didn’t attempt to build whole
paradigms. We used an independent alignment
process for each form.
Fig. 1 displays accuracy for the model measured

across all 90 languages. We additionally show the
accuracy that would be achieved in a case of ideal
selection criteria (labelled as “+ Ideal Transform
Choice” category) for every language. The accu-
racy equals to the proportion of test samples which
succeeded in matching at least one transformation
pattern that produces correct prediction. We also
note that the proposed scoring formula (mostly in-
spired by Indo-European languages) does not fit
well the Oto-Manguean family. If to speak about
the potential ability to cover inflections by directly
observable patterns, Finnic languages with their
tricky morphology appear to be the most challeng-
ing ones.
We also roughly measured potential improve-

ment that may arise from considering correlations
between inflection patterns for different grammat-
ical forms of a single lemma (in other words, from
paradigm clustering). We trained embeddings for
the generated transformations using lemmas as
context markers. Then, we used cosine similarity
between such embeddings as a candidate transfor-
mation selection criterion in cases when a lemma
is both present in the train and in the test sets.
The proportion of samples where application of
such a criterion allowed to turn an incorrect predic-
tion into a correct one, is labelled as ”+ Paradigm
Search” in Fig. 1.
Generally, the experiments with pattern-based

inflection prediction were proposed to verify the
following two hypotheses, (1) that it is sufficient
to reuse observed substitution patterns for proper
modeling of inflection in a wide range of lan-
guages, and (2) that candidate inflection pattern
selection may be based on a simple statistical



0.00

0.25

0.50

0.75

1.00

ct
p

pe
i

m
w

f
gm

l
az

g
vr

o
iz

h
lu

d
vo

t
an

g
cp

a
cl

y tg
l

fr
r

m
lt

cr
e

ev
n

oo
d

ka
n

az
e

da
k

xt
y

m
ao da

n
ot

m
xn

o
ve

p
cz

n
nn

o
ka

z
kj

h
no

b
fa

s
ot

e hi
l

lu
g te
l

liv
bo

d
pu

s
es

t
ki

r
sm

e
gs

w
ui

g is
l

ol
o

sa
n

gm
h

m
hr nl
d

ce
b kr
l

de
u

tu
k

sw
e

m
df

ba
k

zp
v fin

en
g

m
yv zu

l
be

n
cr

h
sy

c
kp

v
ud

m as
t

ve
c

or
m gl
g

fu
r

fr
m tg
k lld ca
t

ur
d

sn
a

ak
a

hi
n

uz
b

ko
n

dj
e

ga
a lin

m
lg

ny
a

so
t

sw
a

Language

A
cc

ur
ac

y

+ Ideal Transform Choice

+ Paradigm Search

AfroAsiatic

Algic

Altaic

Austronesian

Dravidian

IndoEuropean

NigerCongo

OtoManguean

SinoTibetan

Siouan

Songhay

SouthernDaly

Uralic

UtoAztecan

Figure 1: Accuracy for the non-neural flexica01 solution based on immediately observed transform patterns.
Accuracy for the flexica02 hard attention neural system is also given for comparison (in white points).

criterion (frequency, entropy etc.) While a sim-
ple pattern selection rule hasn’t yet been discov-
ered, the experimental results largely support the
first hypothesis. However, it should be noted
that learnt patterns are often too sparse due to
the lack of compositionality and abstraction in
the initial system design. When an inflection
involves complex, phonotactical transformations,
it is unlikely to match a quite “similar” sample
in a train set. It is especially true if the inflec-
tion is irregular which usually implies extreme
sparsity of its domain. Another issue that lim-
its pattern search capacity is related to the model
size. The experiments have shown that greater val-
ues of ConcreteLetterLimit enable greater ac-
curacy figures. However, we had to stick with
ConcreteLetterLimit = 2 because the choice
of greater value led to unacceptably high mem-
ory consumption for most of training sets provided.
Though, this issue is likely to be addressed by
using of ongoing pruning procedures over learnt
transformations.

6.2 Neural systems

Multilingual (family-based) learning The neu-
ral system (flexica02; multilingual) is based
on hard monotonic attention model proposed in
Aharoni and Goldberg (2017), with the same loss
function, but with the following differences:

• We combined all the languages belonging to
a given family3 into a single dataset, having
added two extra features such as language
and genus. The idea was to let the model in-
fer common cross-lingual inflection patterns
when a resource for a particular language is
low.

• We also made a minor modification of pre-
processing. We used maximal continuous
sub-string search to organize alignment be-
tween lemma and its inflected form in order to
advance hard attention state during the learn-
ing phase. Compared to the original system,

3An exception was Uralic family. Due to excessively high
volume of training data, we split this family into 5 subfami-
lies.
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Figure 2: Comparison of accuracy for the proposed neural system with hallucinated data (green or red points for
greater or lower accuracy, respectively) and one without hallucinated data (black points)

we abolished one-by-one alignment of mis-
matching characters, instead letting each mis-
matching segment to be put into correspon-
dence to a single attention state as a whole.

Hyperparameters are set as follows: hidden and
input dimensionality is set to 100, feature dimen-
sionality is 20, the number of layers is 2. The
model is trained with AdaDelta (Zeiler, 2012) for
100 and 20 epochs for small-sized and large-size
families, respectively.

Adding Hallucinated Data Inspired by Anas-
tasopoulos and Neubig (2019), our last model

(flexica03) is a variation of the above model
that uses extra hallucinated samples. We added
200 samples4 per language per part-of-speech
(POS) in order to produce hallucinated inflec-
tion samples that look like real. We reused the
predictor from flexica01 (presented earlier)
with the only difference that now it acts in the
reverse direction predicting the best fitting tag–
lemma combination for a given inflected form.
We also enriched the model with word-generator

4We chose this number as an empirical approximation of
minimum amount of training data required for the predictor
to display stable convergence.



(Shcherbakov et al., 2016) to produce more phono-
tactically plausible forms. This works in the fol-
lowing way: 1) Word generator trained on in-
flected forms for a given POS produces sam-
ples of hallucinated inflected forms (without dis-
tinction of grammatical features); 2) The reverse
flexica01 predictor produces tag–lemma for
each hallucinated inflected form.
As Fig. 2 shows, supplementing training data

with hallucinated samples significantly improved
accuracy in low-resource languages (such as
Maori, Zarma, Tajik, Anglo-Norman, Middle
High/Low German) while for medium to high
sized resources we observe less consistency in pos-
itive effects.

7 Conclusion

We proposed and tested (1) multilingual training,
and (2) pattern-based hallucinated inflections as
possible enhancements of sequence-to-sequence
morphology modeling for diverse low-resource
languages. We also developed a simple non-neural
approach based on multi-variant search of com-
mon inflection patterns. We explored its suitability
for different language families and proposed fur-
ther improvement options.

References
Roee Aharoni and Yoav Goldberg. 2017. Morphologi-

cal inflection generation with hard monotonic atten-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2004–2015, Vancouver,
Canada. Association for Computational Linguistics.

Antonios Anastasopoulos and Graham Neubig. 2019.
Pushing the limits of low-resource morphological in-
flection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
983–995.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
GéraldineWalther, Ekaterina Vylomova, Arya DMc-
Carthy, Katharina Kann, Sebastian J Mielke, Gar-
rett Nicolai, Miikka Silfverberg, et al. 2018. The
CoNLL–SIGMORPHON 2018 Shared Task: Uni-
versal morphological reinflection. In Proceedings of
the CoNLL–SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection, pages 1–27.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
GéraldineWalther, Ekaterina Vylomova, Patrick Xia,
Manaal Faruqui, Sandra Kübler, David Yarowsky,

Jason Eisner, and Mans Hulden. 2017. CoNLL-
SIGMORPHON 2017 shared task: Universal mor-
phological reinflection in 52 languages. In Pro-
ceedings of the CoNLL SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection, pages
1–30, Vancouver. Association for Computational
Linguistics.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016. Morphological smoothing and extrapolation
of word embeddings. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1651–
1660, Berlin, Germany. Association for Computa-
tional Linguistics.

Matthew Dryer, David Gil, and Martin Haspelmath.
2005. The world atlas of language structures. Ox-
ford University Press.

Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 569–
578, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Arya D McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Se-
bastian J Mielke, Jeffrey Heinz, et al. 2019. The
SIGMORPHON 2019 Shared Task: Morphological
analysis in context and cross-lingual transfer for in-
flection. In Proceedings of the 16th Workshop on
Computational Research in Phonetics, Phonology,
and Morphology, pages 229–244.

Andrei Shcherbakov, Ekaterina Vylomova, and Nick
Thieberger. 2016. Phonotactic modeling of ex-
tremely low resource languages. In Proceedings of
the Australasian Language Technology Association
Workshop 2016, pages 84–93.

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (uni-
morph schema). Johns Hopkins University.

Ekaterina Vylomova, Jennifer White, Elizabeth
Salesky, Sabrina J. Mielke, Shijie Wu, Edoardo
Ponti, Rowan Hall Maudslay, Ran Zmigrod, Joseph
Valvoda, Svetlana Toldova, Francis Tyers, Elena
Klyachko, Ilya Yegorov, Natalia Krizhanovsky,
Paula Czarnowska, Irene Nikkarinen, Andrej
Krizhanovsky, Tiago Pimentel, Lucas Torroba
Hennigen, Christo Kirov, Garrett Nicolai, Adina
Williams, Antonios Anastasopoulos, Hilaria Cruz,
Eleanor Chodroff, Ryan Cotterell, Miikka Silfver-
berg, and Mans Hulden. 2020. The SIGMORPHON
2020 Shared Task 0: Typologically diverse mor-
phological inflection. In Proceedings of the 17th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology.

Shijie Wu and Ryan Cotterell. 2019. Exact hard mono-
tonic attention for character-level transduction. In

https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/P17-1183
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/K17-2001
https://doi.org/10.18653/v1/P16-1156
https://doi.org/10.18653/v1/P16-1156
https://doi.org/10.3115/v1/E14-1060
https://doi.org/10.3115/v1/E14-1060


Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1530–
1537.

ShijieWu, Ryan Cotterell, andMansHulden. 2020. Ap-
plying the transformer to character-level transduc-
tion.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701.

http://arxiv.org/abs/2005.10213
http://arxiv.org/abs/2005.10213
http://arxiv.org/abs/2005.10213

