You don't need language-specific tuning.

Multilingual, sparse models are very competitive.

DeepSPIN @ SIGMORPHON

Ben Peters[†] and André F.T. Martins^{†‡} [†]Instituto de Telecomunicações [‡]Unbabel

Inflection results

Model	Acc. \uparrow Lev.	Dist. \downarrow
Inflection-entmax-1.5	90.5	0.217
Inflection-sparsemax	90.9	0.211
Baseline	90.6	0.215

Tied for first place!

All models use multi-encoder RNNs

Same model as DeepSPIN's 2019 submission

g2p results

Model	$WER\downarrowF$	PER ↓
RNN-entmax-1.5	14.47	2.85
RNN-sparsemax	14.19	2.78
Transformer-entmax-1.5	14.15	2.92
Transformer-sparsemax	14.53	2.92
	10.04	2.00

One size (and model) fits all

- Per-language hyperparameter tuning is expensive.
- Small train sets require extra (often artificial) data.
- Multilingual training solves both problems.

Sparse seq2seq

- Just replace softmax with entmax everywhere.
- Interpretable sparse attention.
- Sparse output distributions can make decoding **exact**.
- Requires **no other changes** to architecture.

Multilinguality

Phonology-aware char embeddings

- Multilingual g2p maps from disjoint scripts to shared IPA.
 Grapheme embeddings cluster by phonological similarity.
- Applications to transliteration?

How data-hungry is inflection?

Baseline (RNN) 16.84 3.99

- Third place
- Best-performing transformer

What is entmax?

$$\begin{split} \boldsymbol{\alpha}\text{-entmax}(\boldsymbol{z}) &\coloneqq \operatorname*{argmax}_{\boldsymbol{p} \in \Delta^d} \boldsymbol{p}^\top \boldsymbol{z} + \mathsf{H}_{\alpha}^{\mathrm{T}}(\boldsymbol{p}) \\ &= [(\alpha - 1)\boldsymbol{z} - \tau \mathbf{1}]_{+}^{1/\alpha - 1} \end{split}$$

 $\mathsf{H}_{\alpha}^{\mathrm{T}}(\boldsymbol{p}) \coloneqq \begin{cases} \frac{1}{\alpha(\alpha-1)} \sum_{j} (p_{j} - p_{j}^{\alpha}), & \alpha \neq 1, \\ \mathsf{H}^{\mathrm{S}}(\boldsymbol{p}), & \alpha = 1 \end{cases}$

where

• $\alpha = 1 \rightarrow \text{softmax}$

• $\alpha = 2 \rightarrow \text{sparsemax}$

• $\alpha = \infty \rightarrow \operatorname{argmax}$

• $\alpha > 1 \rightarrow$ sparsity possible

martins $+ < en > \rightarrow maxinz$ martins $+ < pt > \rightarrow mertij$

Label each sample with its language.

- Learn a language embedding for each label.
- Concatenate to the character embedding at each step.

- Inflection-sparsemax dev results; each point is a language.
- Bigger is better, but other factors make a huge difference.
- Typology matters, but it doesn't explain the sometimes large differences between related languages.

DeepSPIN (''Deep Structured Prediction in NLP'") is a research project funded by the European Research Council.

• Sparse, **differentiable** softmax replacement.