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Summary

I Iterative ensemble optimization and data augmentation
I Based on large amount of diverse simple models
I Effective for low-resource scenarios
I 1st in the grapheme-to-phoneme conversion task
I 4th in the morphological inflection task

Ensemble Self-Training

General Workflow
1: function EnsembleSelfTraining(L, U , T )

Require: labeled data L, unlabeled data U , model types T
2: Initial data L0 = L
3: Model pool M = ∅
4: for n : 0...N do . each iteration
5: for tk ∈ T do . each model type
6: mk

n = Train(tk, Ln) . train new models
7: M = M ∪ {mk

n} . add to model pool
8: end for
9: E = SearchEnsemble(M) . find optimal ensemble

10: Sample u ∼ U . sample unlabeled data
11: l = SelectData(E , u) . select reliable prediction
12: Ln+1 = AggregateData(Ln, l) . add as labeled data
13: U = U − l
14: end for
15: return E , Lk
16: end function

Ensemble Search
I Search for the optimal ensemble with genetic algorithms
I A binary code to represent an ensemble, e.g. 0101001110
I Fitness of an ensemble is the accuracy on the dev set
I Use selection, crossover, and mutation to evolve the ensemble

Data Selection
I Use the ensemble to predict a batch of unlabeled data
I Select the data with high agreement in the ensemble
I Add as new training data for the next iteration

Grapheme-to-Phoneme

Task & Data
I Task 1 of SIGMORPHON Shared Task [Gorman et al. 2020]

I Map a sequence of graphemes to a sequence of phonemes

e.g. excuser → εkskyze
I Unlabeled data: word lists mostly extracted from OpenSubtittles

Models
I 4 types of models:

(1) baseline pair n-gram model [Lee et al. 2020]

(2) seq2seq model with soft attention [Luong et al. 2015]

(3) seq2seq model with hard monotonic attention [Aharoni and Goldberg 2017]

(4) hybrid seq2seq/tagging model: predict a short sequence for each input character

I Paired with l2r and r2l generation directions and 2 random seeds

Results

Model WER PER

IMS 13.81 2.76
CLUZH 14.13 2.82
DeepSPIN-3 14.15 2.92
CU-1 14.52 3.24

Pair n-gram 22.00 4.92
LSTM 16.84 3.99
Transformer 17.51 4.30

Table: Average word error rates (WER) and
phone error rates (PER) on test set.

I IMS ranks 1st among the participants
I Outperforms all baselines
I How much contribution comes from

I ensemble of simple models?
I diversity of model types?
I data augmentation?

Analysis

average ensemble

default 17.6 10.7
-diversity 16.2 11.2
-augment 18.1 10.1

Table: WER of the model average and

the ensemble on dev set.

I Analyze the contribution of each factor:
3 Ensemble much better than single models
3 Lower model diversity (only hybrid model)

leads to lower ensemble performance despite
higher average model performance

7 Worse performance with data augmentation

average ensemble

default 35.5 25.2
-augment 53.4 29.2

Table: WER in low-resource scenario.

I Simulate low-resource scenario:
I 200 training instances for each language
3 Better performance with data augmentation

Morphological Inflection

Task & Data
I Task 0 of SIGMORPHON Shared Task [Vylomova et al. 2020]

I Generate inflected word form from lemma and morphological features

e.g. jagen + V;SBJV;PL;3;PST → jagten
I Unlabeled data: recombine the lemma and morphological features

Models
I 2 Types of models:

(1) seq2seq model with soft attention [Luong et al. 2015]

(2) seq2seq model with hard monotonic attention [Aharoni and Goldberg 2017]

I Paired with l2r and r2l generation directions and 2 random seeds

Results

Model Accuracy

CULing-01-0 0.912
DeepSPIN-02-1 0.909
UIUC-01-0 0.905
IMS-00-0 0.892

LSTM 0.858
LSTM+Aug 0.888
Transformer 0.901
Transformer+Aug 0.903

Table: Average accuracy on test set.

I IMS ranks 4th among the participants
I Outperforms LSTM baselines

but not Transformer baselines
I Training data size varies from 102 to 105,

how well do the models perform with
different data sizes?

Analysis
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Figure: Performance difference between our system and Transformer+Aug wrt. training data size.

I Our system performs relatively better in low-resource scenarios
I No clear relation between performance and language family
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