#### The CMU-LTI submission to the SIGMORPHON 2020 Shared Task 0: Language-Specific Cross-Lingual Transfer 柕 **Carnegie Mellon University** Nikitha Murikinati and Antonios Anastasopoulos Language Technologies {nmurikin,aanastas}@andrew.cmu.edu Institute NEULAB **Highlights Two-Step Attention for Disentangled Inputs** Morphological Inflection is the task aguà First, encode the tag sequence and the lemma: $P(y_1 \cdots y_K)$ where, given a lemma, e.g. $\mathbf{h}_n^x = \operatorname{enc}^x(\mathbf{h}_{n-1}^x, x_n)$ and $\mathbf{h}_m^t = \operatorname{enc}^t(\mathbf{T}).$ softmax aguar $\mathbf{s}'_1 \cdots \mathbf{s}'_K$ For each decoding step, $\mathbf{s}_k = \mathbf{s}_{k-1}' + \mathbf{c}_k^t$ decoder and a set of morphological tags, e.g. $\mathbf{c}_1^t \cdots \mathbf{c}_K^t$ $\mathbf{c}_1^x \cdots \mathbf{c}_K^x$ get context from tag attention a) $\mathbf{s}'_{k} = \det(\mathbf{s}'_{k-1}, \mathbf{c}^{x}_{k}, y_{k-1})$ attention 1 ↑ attention V; PRS; 2; PL; IND; obtain a tag-informed decoder state b) $\mathbf{h}_1^t \cdots \mathbf{h}_M^t$ $P(y_k) = \operatorname{softmax}(\mathbf{s}'_k).$ $\mathbf{h}_1^x \cdots \mathbf{h}_N^x$

one has to generate the correctly inflected form, e.g.

aguà

In low-resource settings this task is still very challenging.

We combine several techniques:

- **1.** a novel two-step attention for the decoder
- **2.** data hallucination
- **3.** multi-tasking with a simple copying task
- **4.** cross-lingual transfer from multiple related languages

and achieved state-of-the-art results over 44 test languages (from the SIGMORPHON 2019 challenge), with a gain of more than 15 points over the baseline.

In the SIGMORPHON 2020 Task 0 shared task, our additions were:

produce output character d)

attend over lemma

$$\mathbf{c}_{k}^{x} = \begin{bmatrix} \sum_{n} \alpha_{kn}^{x} \mathbf{h}_{n}^{x} \end{bmatrix} \qquad \mathbf{c}_{k}^{t} = \begin{bmatrix} \sum_{m} \alpha_{km}^{t} \mathbf{h}_{m}^{t} \end{bmatrix}$$

#### V PRS 2 PL IND aguar

encoder

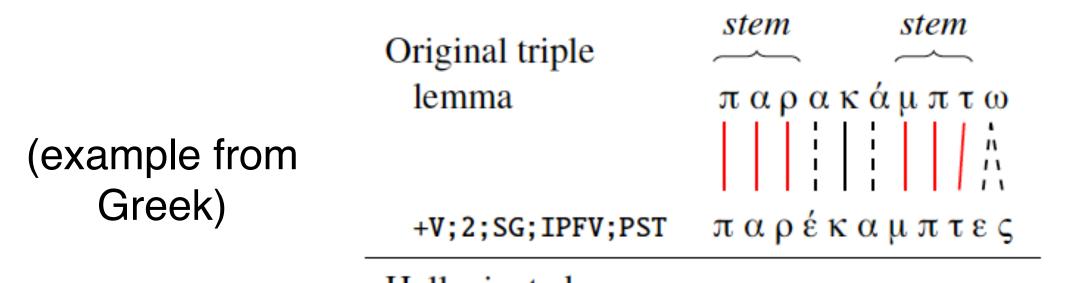
 $x_1 \cdots x_N$ 

f encoder

 $t_1 \cdots t_M$ 

### **Additional Biases**

C)


1. encourage monotonic attention: use an additional copying task (see training regime below)

2. encourage attention coverage of the two sources:  $-\lambda \parallel \Sigma_j a_{jm}^t - \mathbb{I} \parallel_2 \qquad -\lambda \parallel \Sigma_j a_{jn}^x - \mathbb{I} \parallel_2$ 

 $y_l = \text{softmax}(\text{MLP}(\mathbf{h}_N^x))$ 3. Language discriminator over the encoder outputs (with gradient reversal):

## **Data Hallucination**

- 1. Find a "stem"-like region based on character alignment that remains unchanged
- 2. Randomly replace the inside characters



# **Cross-Lingual Training Regime**

- 1. Train only on copying task over all languages large batch size and learning rate
- Train on both inflection (80%) and copying (20%) tasks for all languages upsample the low-resource language learning rate decay and restart the optimizer
- Train only on the test language inflection task 3. small batch size

- **1.** Add transliterated/romanized transfer language data for related language pairs that nevertheless use different scripts:
- Classical Syriac (Arabic, Hebrew)
- M
- 0
- B
- T
- Pa
- **2.** C

which however should be able to

specific approaches.

be improved upon using language-

- L
- L

Hallucinated πξρακάμοτω lemma πξρέκαμοτες +V;2;SG;IPFV;PST

### scheduled sampling

# Results

| <ul> <li>Maltese (Italian, Hebrew)</li> </ul> | Language | Accuracy | Language | Accuracy | Language | Accuracy | Language | Accuracy |
|-----------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|
| Oromo (Arabic, Hebrew)                        | aka      | 99.1     | fas      | 96.2     | 11d      | 97.7     | sna      | 100.0    |
| Bengali (Sanskrit, Hindi)                     | ang      | 75.4     | fin      | 97.3     | lud      | 53.7     | sot      | 100.0    |
| <ul> <li>Tajik (Farsi)</li> </ul>             | ast      | 91.4     | frm      | 98.8     | lug      | 90.6     | swa      | 100.0    |
|                                               | aze      | 78.5     | frr      | 85.5     | mao      | 69.0     | swe      | 95.4     |
| <ul> <li>Pashto (Farsi)</li> </ul>            | azg      | 89.0     | fur      | 98.3     | mdf      | 92.7     | syc      | 91.6     |
| . create language specific transfer           | bak      | 97.4     | gaa      | 100.0    | mhr      | 90.8     | tel      | 94.9     |
| models using related languages                | ben      | 98.6     | glg      | 97.4     | mlg      | 100.0    | tgk      | 93.8     |
| only for low-resource settings,               | bod      | 84.7     | gmh      | 90.1     | mlt      | 88.7     | tgl      | 64.0     |
| e.g.:                                         | cat      | 97.5     | gml      | 60.8     | mwf      | 70.3     | tuk      | 85.4     |
| <ul> <li>Ladin (Friulian)</li> </ul>          | ceb      | 84.7     | gsw      | 84.9     | myv      | 93.0     | udm      | 97.5     |
|                                               | cly      | 81.0     | hil      | 92.4     | nld      | 97.5     | uig      | 91.9     |
| <ul> <li>Ludian (Karelian, Veps)</li> </ul>   | cpa      | 83.5     | hin      | 98.4     | nno      | 74.2     | urd      | 36.3     |
|                                               | cre      | 44.9     | isl      | 95.3     | nob      | 75.1     | uzb      | 51.5     |
| Results:                                      | crh      | 97.2     | izh      | 80.8     | nya      | 100.0    | vec      | 98.8     |
|                                               | ctp      | 50.2     | kan      | 75.1     | olo      | 91.5     | vep      | 79.3     |
| anked 20th among 31 systems,                  | czn      | 81.3     | kaz      | 88.5     | ood      | 79.0     | vot      | 77.2     |
| vith non-optimized LSTM-based                 | dak      | 89.7     | kir      | 88.4     | orm      | 93.6     | vro      | 57.3     |
| systems.                                      | dan      | 72.3     | kjh      | 98.8     | ote      | 97.0     | xno      | 90.2     |
|                                               | deu      | 92.8     | kon      | 98.1     | otm      | 97.4     | xty      | 90.2     |
|                                               | dje      | 100.0    | kpv      | 95.9     | pei      | 71.2     | zpv      | 82.9     |
| ake-away:                                     | eng      | 96.5     | krl      | 95.0     | pus      | 68.6     | zul      | 89.7     |
| The top-3 systems of the shared               | est      | 93.5     | lin      | 100.0    | san      | 92.6     |          |          |
| ask offer much better solutions,              | evn      | 55.0     | liv      | 93.1     | sme      | 97.9     |          |          |

Table 1: Accuracy of our system on every language. We highlight the languages where our system was statistically equal to the best system (with p < 0.005).