
KU-CST at the SIGMORPHON 2020 Task 2 on
Unsupervised Morphological Paradigm Completion

Manex Agirrezabal & Jürgen Wedekind

Introduction
We built a model that gets raw text and a list of
lemmas, and returns the set of paradigms for
each of those lemmas. The raw text could be
the following:

The aircraft landed at the JFK airport. Other
pilots decided to land in Philadelphia. As you

may imagine, landing a plane is not an easy job,
but imagination can help.

From there, the model should be able to extract
morphological paradigms. Some of them are
shown in the table below.

We present a pipeline that assumes that all
morphological realizations in a paradigm (for
each language) follow a fixed structure:

stem+suffix

Based on that logic, we look for the best
candidates to compose the suffix inventory, we
cluster them using K-means and after that, we
join stems and suffixes. We employ language
models to get the most natural outputs.

Dataset
As one of the most widely extended resources is
the bible, this was used as the raw text input
data. Together with the bible, a list of verbal
lemmas was given. The languages for
development were Maltese, Persian,
Portuguese, Russian and Swedish. The
languages for testing included the following:
Basque, Bulgarian, English, Finnish, German,
Kannada, Navajo, Spanish and Turkish.

Abstract
We present a model for the unsupervised
discovery of morphological paradigms. The goal
of this model is to induce morphological
paradigms from the bible (raw text) and a list of
lemmas. We have created a model that splits
each lemma in a stem and a suffix, and then we
try to create a plausible suffix list by considering
lemma pairs. Our model was not able to
outperform the official baseline, and there is still
room for improvement, but we believe that the
ideas presented here are worth considering.

Discussion and Future work

We assumed each inflected form to be decom-posable into a stem and a suffix. This could be, for example,
sufficient for English or Spanish, but not for languages such as German that follow a two splits pattern.

Apart from that, a much more straightforward estimate of the morphological richness rm could, for example, be
obtained by just considering the triple l1= r1+s ,l2= r2+s, l3= r3+s of optimally splitted distinct lemmas with the
maximum number of common suffixes. Because these lemmas are most likely to be frequently used lemmas
with regular inflection, the size of the union of their inflections would presumably yield a good estimate of rm.
Clustering of these triples could also help in identifying verb classes with distinct but regular inflection.

As we have not used any neural network based component, and these would be very useful for learning the
morphophonological changes that commonly happen when inflecting words, we would like to incorporate a
Sequence-to-Sequence model at the end of our pipeline.

U N I V E R S I T Y O F C O P E N H A G E N
C E N T R E F O R L A N G U A G E T E C H N O L O G Y

land decide imagine

land decide imagine

landed decided imagined

landing deciding imagining

Word splitting

Regular verb inflection
inference

Clustering suffix
candidates K-Means

Best candidate selection
Language Model

e+ntrar
en+trar
ent+rar
entr+ar
entra+r
entrar+!

entrar
echar
poner

preguntar
…

“…Jesús les dio permiso , y ellos salieron del hombre
y entraron en los cerdos . Los animales echaron a
correr cuesta abajo …”

ech+ar à ech+aron
entr+ar à entr+aron

ar, aron, ntar, ntaron, ieron, arlo, rlo, …

0: ar, ntar
1: aron, ntaron, ieron
2: arlo, rlo
…

Split lemma: ech+ar

0: argmax (PLM(echar), PLM(echntar))
1: argmax (PLM(echaron), PLM(echntaron), PLM(echieron))
2: argmax (PLM(echarlo), PLM(echrlo))
…

echar: echar, echaron, echarlo, …

In the first step, for each lemma in the lemma
list and each word in the corpus/dictionary, all
possible splits are generated.

First, we determine for each splitted lemma
the number of potential inflections of the
hypothesized stem. Then, in order to find
regularly inflecting lemmas, we consider
lemma pairs and we look for the biggest
intersection of possible suffix sets for each
lemma pair and for each split.

We check how often a lemma is associated
with different splits. The split that happens
most frequently will be used as the stem.

Each stem will be joined with one suffix from
each cluster. In order to decide which is the
best suffix, we use a bigram character-level
language model to estimate the probability of
the output sequences, trained on the input
bible.

In this step we group different realizations of
the same suffix with K-Means clustering using
a modified version of Minimum Edit Distance
as the distance metric, which tries to punish
changes that are made at the end of the
suffix. Changes of characters of different
classes are also considered worse than those
of the same class (consonants and vowels).

Expansion of the lemma list

In order to increase the recall of the model, we decided to extend the lemma list. We obtain new lemmas
by training a very simple verb classifier. We create a simple dataset with the input lemmas and some
random words from the corpus. We, then, train a simple Logistic Regression model, using character uni-,
bi- and trigrams for representing each word. We also include word boundary symbols in the
representations. The model that uses the extended list of lemmas for extracting suffixes is called the
Flexible model, and on the other hand, the initial model (the one that uses only the initial lemmas as
input) is called the Non-flexible model.

