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Our Approach: Bidirectional Decoding Our Architecture: Transformer with Synchronous Bidirectional Attention Experimental Results

We apply bidirectional decoding (Zhou et al., Build upon the baseline transformer outpur (288 2 Family Accuracy Edit-Distance
2019) to Task 0: Morphological Inflection. of Wu et al. (2020): ft Synchronous Bidirectional MONO TRM BITRM | MONO TRM BIIRM
y
. . Softmax Dot Product Attention Afro-Asiatic 9293 95.67  96.37 0.11 0.05 0.05
e Words are generated simultaneously from 1. Lemma & morphosyntactic tags L.ﬁ — Algic 6720 6870 7030 | 126 120 116
. . inear Australian 61.40 90.00 87.80 0.92 0.27 0.26
left-to-right (L2R) and right-to-left (R2L). embedded and fed to encoder Decoder ff Austronesian | 77.66 8128 8230 | 058 044  0.41
. | Dravidi 86.05 87.10 85.30 0.48 0.46 0.54
e FEach direction is conditioned (same as baseline model). > Adii‘g:rm 9 Germamic | 8633 8800 8738 | 030 023 025
. . Indo-Aryan 97.78  98.02 98.18 0.05 0.05 0.04
on the other direction. 2. Decoder generates L2R and R2L  gncoder (same _Forward Iranian | 6300 8250 8253 | 104 042 046
. . as baseline) “\ = Niger-Congo 9772 9772  97.87 0.04 0.04 0.03
tokens in parallel at each time step. =™ N AddaNorm o Nilo-Sahan | 0.00 87.50 100.00 | 288 0.9  0.00
P . . . . . r T > Oto-Manguean | 82.71 86.59  87.49 0.49 0.32 0.28
Bidirectional decoding works well for machine 3. Both directions share parameters, 'K Ad‘i&.N:'m - Ulnterasiention ) || Romance | 9551 9925 9872 | 0.2 0.02  0.03
' . ec Sino-Tibetan 83.20 84.40 84.40 0.22 0.20 0.21
translation (Zhang et al., 2018; Zhou et al., 2019) so the model has the same number _ Forward ) | ——=) Siouan 9290 9560 9490 | 0.6 0.08  0.10
" " " " A . . T I 55.30 58.60 58.30 1.20 1.06 1.09
because it reduces bias of left-to-right generation. of parameters as the unidirectional .| ——1__ AddeNorm 4 ungusic | 5530 S8.60 5830 | 120 106 109
b ase I | ne I g :Y:I‘:hml"o“: R Uralic 83.21 88.34 88.18 0.39 0.29 0.28
y Multi-Head Intra- rectiona L= Uto-Azt 76.30  80.80 82.50 0.49 0.41 0.39
4. Multi-head intra-attention replaced ot j 5 - - —
- - - - - Uitl- | B | 7 . . > — — Macro-averages of accuracy and edit distance by language family.
Bidirectional Decoding for Inflection with Svach 3 i octional \ J : HNSto — atention (G, K. V) e Vs o] oottt oaror
yncnronous bl Irectiona Dositional ®_<? T@ ocitions! ompared against MONO (Wu and Cotterell, )
. . . . . . Encodin U ncodin 2 . > < <
In morphological inflection, phonemes or Attention mechanism (see right). R oot T H'UWre — Attention (Q, K, V) and TRM (Wu et al., 2020).
graphemes may depend on either the preceding e e H = NSO 4 ) tanh  HUure ) Acc. | Avg. Edit Dist.
. . . . . nouts Outputs (L2R & R2L) > > < <
Or the fO”OWIng contex [, OrF bOth Tralnlng DetaIIS: p ISRGSE el Figures adapted from Zhou et al. (2019) Development | 27 18 | 30 14
1. Model trained to optimize likelihood of L2R & R2L output et
: snilation i : . Model trained to optimize likelihood o outputs.
Regresswe assimilation in Kazakh: p . P . Number of languages (out of 45) on which our model
L N ACC-DEESC  Fitam 4 N:ACC:SGPSS3S 2. Separate model trained for each language, with hyperparameters selected for each family. equals or outperforms one or both of the neural baselines.
iap / yDEF, iap / o0,

! !

kitapty kitab: Inference: Bidirectional Beam Search Conclusions & Future Work
In the first case, the initial voiceless  of the suffix 1. Pursue k best L2R and k best R2L hypotheses simultaneously. Conclusions:
does not change the VOICING of the p. o 2. At each step, feed ith best L2R hypothesis and ith best R2L hypothesis to decoder 1. Strong performance against baselines make
In.the second case, p voices to bto aSS|m|I.ate to generate new L2R and R2L predictions. bidirectional decoding a promising direction
with the following vowel 1 of the case ending. L . .
3. At the end, select hypothesis with highest probability to length ratio. 2. Some languages appear to strongly favor L2R
Phonetic Conditioning In Latin: Bidirectional beam search with beam width k=2 hypotheses while others favor R2L hypotheses
laudo + V;IND;PRS;2;SG  laudo + V;IND;PRS;3;5G | || eentTTT . Questions for Future Work:
l . l 1. How does the presence of various types of
laudds laudat - - : affixes affect the preferred decoding direction?
The underlying morpheme -@- marks the present =0 =0 | =0 = | =0 I =0 2. Initial experiments show the bidirectional
tense, while -s and -t mark person. =" =T S =1 X t=1 transformer converges more quickly than the
/ R o’ ., t=3 t=3 . . .
In the second case, the underlying long vowel a R =2 Teeeaeest = L2R baseline, despite the same number of
surfaces as short a due to the presence of the (1 (= o parameters. What do further studies show?
following stop consonant . 3. How can a multilingual model be applied?
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