
(1) Hand-written FST grammars

Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars

Sarah Beemer, Zak Boston, April Bukoski, Daniel Chen, Princess Dickens, Andrew Gerlach, Torin Hopkins,
Parth Anand Jawale, Chris Koski, Akanksha Malhotra, Piyush Mishra, Saliha Muradoğlu, Lan Sang, Tyler
Short, Sagarika Shreevastava, Elizabeth Spaulding, Tetsumichi Umada, Beilei Xiang, Changbing Yang,
Mans Hulden
first.last@colorado.edu
https://github.com/mhulden/7565tools

(2) Non-neural inflection model and inflectional class clustering

166

Ingrian English

Figure 4: Hierarchical clustering of lexemes by apparent inflectional behavior based on string transformations
between inflectional slots for Ingrian (left) and English (right). The numbers in parentheses in Ingrian refer to the
Linguist-derived inflectional class number after developing a grammar. The Ingrian data is the output from the full
training data while the English is a small selection of verbs to illustrate clustering behavior.

ever, were relatively “easy” languages and often
did not contain any significant morphophonology
at all. On two languages, Ingrian (izh) and Taga-
log (tgl), we were able to significantly improve
upon the other models participating in the task.
These languages had a fairly large number of in-
flectional classes and very complex morphophonol-
ogy. Ingrian features a large variety of consonant
gradation patterns common in Uralic languages,
and Tagalog features intricate reduplication pat-
terns (see Figure 2).

We include results for train, dev, and test as we
used tools to continuously evaluate our progress
during development on the training set. It is worth
noting that the linguist-driven development process
does not seem to be prone to overfitting—accuracy
for several languages on the test set was actually
higher than on the training set.

The non-neural paradigm completion model
(CU-7565-02), which was submitted for nearly
all 90 languages performed reasonably well, and
is to our knowledge the best-performing non-
neural model available for morphological inflection.
Never outperforming the strongest neural models;
it nevertheless represents a strong improvement
over the baseline non-neural model provided by the
organizers. Additionally, it provides another tool
to quickly see reasonable hypotheses for missing
forms in inflection tables.

6 Discussion

6.1 Earlier work
To our knowledge, no extensive comparison be-
tween well-designed manual grammars and neural

Language trn1 dev1 tst1 tst2

aka 100.0 100.0 100.0 89.8
ceb 85.2 86.2 86.5 84.7
crh 97.5 97.0 96.4 97.7
czn 79.0 76.0 72.5 76.1
dje 100.0 100.0 100.0 100.0
gaa 100.0 100.0 100.0 100.0
izh 93.4 91.1 92.9 77.2
kon 100.0 100.0 98.7 97.4
lin 100.0 100.0 100.0 100.0
mao 85.5 85.7 66.7 57.1
mlg 100.0 100.0 100.0 -
nya 100.0 100.0 100.0 100.0
ood 81.0 87.5 71.0 62.4
orm 99.6 100.0 99.0 93.6
ote 91.2 93.5 90.9 91.3
san 88.5 89.7 89.0 88.3
sna 100.0 100.0 100.0 99.3
sot 100.0 100.0 100.0 99.0
swa 100.0 100.0 100.0 100.0
syc 89.3 87.3 88.3 89.1
tgk 100.0 100.0 93.8 93.8
tgl 77.9 75.0 77.8 -
xty 81.1 80.0 81.7 70.3
zpv 84.3 77.9 78.9 81.1
zul 82.9 88.1 83.3 88.5

Table 1: Results for the train, dev, and test sets with our
handwritten grammars (1) and our non-neural learner
(2). The non-neural model also participated in addi-
tional languages not shown here. Languages with ac-
curacies on par with or exceeding the best shared task
participants are shown in boldface.

MacGyvering abominating rendering V.PTCP;PRS
? abominated rendered V.PTCP;PST
- - - V;NFIN
MacGyvers abominates renders V;SG;3;PRS

MacGyver abominate render

Candidates for ?: [MacGyvered, MacGyverd, MacGyvered, MacGyvered]

1

1

2

2 3 4

3

4

Tagalog inflectional strategies

Agent AGFOC

Ptv IPFV LGSPEC1
um Rtum R I

hag hag R mas R II

hang hang R Mang R III
na na R ma R II

Thaha haha R maka R
nag many R many R VI
nan han R man R VII
Patient PFOC 2also hah

PFV IPFV LGSPEC1 Cepenthetich

in R in R sin II
in an in R an R an I

in R in R I

ni ni R i R II
Jhaha an hahaha ah

ni an ni R an R an VI
i in i R in i R VI
in R in i r VIII
an R in an R ah III
ni ni R R in F
ni ni R R Xi

Ingrian English

bus;N;PL sheep;N;PL

Lexicon (lexc) Guesser

blarg;N;PL

Morphophonological FST cascade

bus+s sheep blarg+s

buses sheep blargs

run

ran

running runs

?+ 0:s

?+ u:a ?+ s:0

?+ {ning}:s

?+ 0:{ning}

?+ u:a ?+ {ning}:0 ?+ u:a ?+

run
ran

run0000
running

run0
runs

running
runs000

running
ran0000

runs
ran0

(a)

(b)

0 1@ s a u

@ s a u

2<u:a> 3@ s a u

@ s a u

4<s:0>

(c)

• Evaluate effort required to develop FST-
grammars that exceed seq2seq models in
accuracy

• A team of 20 with linguistic training and training in
FST tools did rapid development of 25 languages
with the foma finite-state tool

• Linguists develop grammars based on training/
dev sets

• Performance equal to best neural model in task
on 11 languages and significantly better on 2
(Ingrian, Tagalog)

• TL;DR: only saw improvement vs. seq2seq
models with languages with complex inflectional
classes and complex morphophonology

Paper-and-pencil linguistics

example

Results

• Also developed various tools to aid rapid development and analysis of
inflectional behavior

• A non-neural model for filling partially filled missing paradigms by
creating simple FSTs that inflect each known slot from every other
known slot by learning regular expressions that encode an FST that
does this

• This can be used to solve the task by generating candidates for slots
from all known slot-slot FST transformations for other lexemes and
using them in a voting scheme for the lexeme at hand (see fig below)

• It can also be used for clustering lexemes into inflectional classes
(helpful for developing initial hypotheses about classes when large
numbers of partial paradigms are available)

• The number of identical slot-to-slot transformation FSTs for
each lexeme is used as a distance measure for clustering

Filling in missing forms and clustering example

Align slots

Learn all-pairs
regexes

Compile to FST

tst1 = handwritten (1)
tst2 = learned (2)

