Flexica01: non-neural, alignment based

Lemma-to-inflected form transformation are generated directly by the following simple process:

Step 1. Find maximal continuous matches between lemma and inflected form.

Example: understand → understood

Extracted rules: \(\{ \text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} \rightarrow \{ \text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} \} \), where \{\text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} and \{\text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} are groups.*

Step 2. Starting with previously generated transformation pattern(s), generate a set of patterns more specific to a given training word by treating a limited number of characters as concrete (i.e. standing outside any group).

For the example from previous step and a limit of one character: \(\{ \text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} \rightarrow \{ \text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} \} \), where \{\text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} and \{\text{\textbackslash{}v\textbackslash{}am\textbackslash{}t} are groups.*

When predicting a form, score matching candidate patterns using the following three components:

1. A frequency of transformation occurrence in a training set;
2. The diversity \(\Delta \) of marginal (the first one and the last one) letters in groups as they occurred in different fits of a given transformation found in the training set.
3. Specificity \(s \) which here means the number of concrete characters in the pattern (without counting characters falling into groups).

We were using the following empirical formula:

\[
G = \frac{1}{2} \log f + 6 \log \Delta + 12 s
\]

Near-misses (the second scored transform was correct)

<table>
<thead>
<tr>
<th>G</th>
<th>0.00</th>
<th>0.25</th>
<th>0.50</th>
<th>0.75</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flexica02: Hard attention, multilingual (family-based)

This neural system is based on hard monotonic attention model proposed in [Aharoni and Goldberg](2017), with the same loss function, but with the following differences:

1. We combined all the languages belonging to a given family into a single dataset, having added two extra features such as language and genre.
2. We used maximal continuous sub-string search to organize alignment between lemma and its inflected form in order to advance hard attention state (abolishing one-by-one alignment of mismatching characters).

Flexica03: Adding hallucinated data

Inspired by [Anastassopoulos and Neninić](2019), we added 200 samples per language per part-of-speech (POS) in order to produce hallucinated inflection samples that look like real. We reused the predictor from Flexica01. We also enriched the model with word-generator [Shcherbakov et al.](2016)Shcherbakov, Vylomova, and Thierberg, http://regexus.com/ag.php to produce more phonotactically plausible forms: 1) Word generator trained on inflected forms for a given POS produces samples of hallucinated inflected forms (without distinction of grammatical features); 2) The reverse Flexica01 predictor produces tags/lemma for each hallucinated inflected form. Accuracy was significantly improved in low-resource languages (such as Maori, Zarma, Tajik, Anglo-Norman, Middle High/Low German).

Conclusion

We proposed and tested (1) multilingual training, and (2) pattern-based hallucinated inflections as possible enhancements of sequence-to-sequence morphology modeling for diverse low-resource languages. We also developed a simple non-neural approach based on multi-variant search of common inflection patterns.