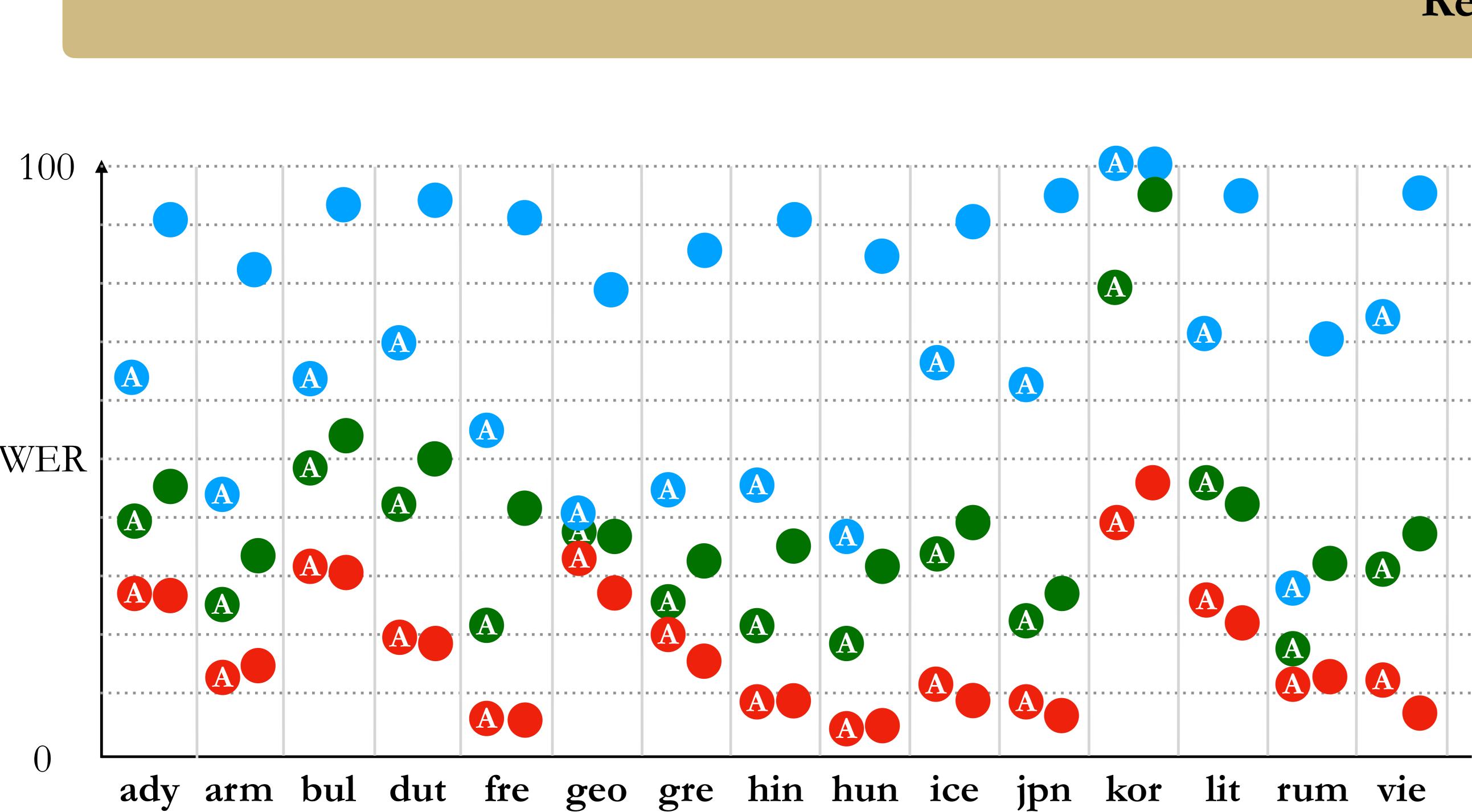
Data Augmentation for Transformer-based G2P

Zach Ryan, Mans Hulden

{zachary.j.ryan,mans.hulden}@colorado.edu https://github.com/LonelyRider-cs/sig_shared_tasks()

Overview

- An experiment on data augmentation for low-resource G2P (< 1000examples)
- Use SIGMORPHON task 1 data
 - SIGMORPHON had no lowresource track so we sample uniformly from the original data to create data sets of 100 & 500 examples
- We use the *Transformer* throughout with the shared task baseline settings
- Use augmentation strategy based on 3 components (see right)
- Significant improvement with 100 examples, 500 examples, tapering off with full data set of 3,600 examples



(2) Extract consistent pieces (1) Align example data with MCMC ta xation Once we have all beginning and • Use an MCMC aligner, ending slices, we estimate the taksasjõ similar to EM aligners for reliability of an i-o slice being

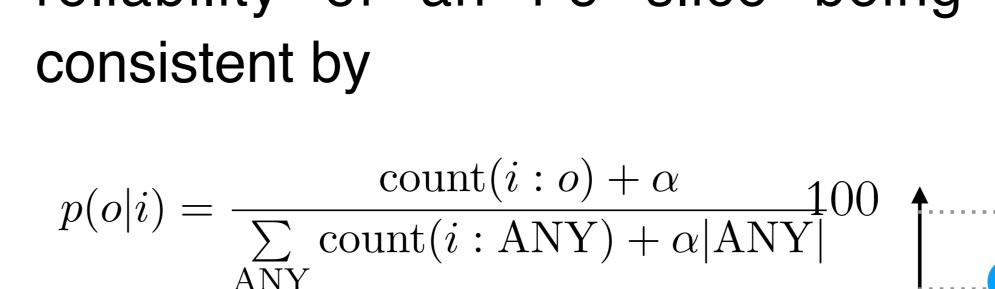
- 1-1 alignment, but faster
- Something like minimumedit distance doesn't apply here since inputoutput alphabets are different
- Once alignments are learned, we extract all substring-pairs (input/ output) from the beginning and end of the input-output pair
- We estimate which pairs are "reliable" g2p slices

déclaration deklasasjõ

ambroisie ãbswazi

commun komõ

traite tre t



• if p(oli) > our cutoff (0.98) we use the slice to create hallucinated words

Align

#camerour #kam_**u**_r

#différer #di_fe⊮ã_

WER

Results

	Lang	100	100 ^{aug}	500	500 ^{aug}	full	full ^{aug}
ounaugmented, 100 ex	ady	90.22	64.67	45.33	39.78	27.33	27.78
A augmented from 100	arm	82.89	45.33	33.11	24.89	14.89	13.33
	bul	93.56	64.89	53.78	48.44	30.22	32.22
ounaugmented, 500 examples	dut	95.33	69.11	50.67	42.00	18.22	19.11
	fre	91.56	56.22	41.78	22.00	6.00	6.22
A augmented from 500 examples	geo	79.78	40.89	37.33	38.89	27.78	33.33
	gre	86.00	44.89	32.00	26.67	16.67	20.67
unaugmented, 3600 examples	hin	90.44	46.22	34.44	21.33	9.56	9.11
	hun	84.89	37.33	31.78	17.11	4.67	4.44
A augmented from 3600 examples	ice	91.11	66.89	39.33	33.78	9.56	10.67
	jpn	95.56	62.22	28.22	22.00	6.67	8.67
	kor	100.0	100.0	95.78	79.78	46.22	39.78
	lit	94.89	70.89	42.89	46.44	21.78	26.22
	rum	70.67	28.67	31.56	17.11	12.22	11.33
	vie	96.44	74.89	37.33	30.89	7.11	11.78

Table 2: Word error rate (WER) results on the test set when trained with 100 examples, 500 examples, and the full data set, compared to augmentation (^{aug}) for $(100,500,3600) \rightarrow 50,000$ synthetic examples.

GUniversity of Colorado **Boulder**

(3) Generate new data

- We also use an unsupervised algorithm to learn which phonemes are consonants and vowels
- We only splice together pieces where we get CV or VC at the juncture

