
Data Augmentation Phonemic Experiment

Data Augmentation for Transformer-based G2P

Zach Ryan, Mans Hulden
{zachary.j.ryan,mans.hulden}@colorado.edu
https://github.com/LonelyRider-cs/sig_shared_tasks

(1) Align example data with MCMC (2) Extract consistent pieces (3) Generate new data

#camerounais#
#kam_ʁu_nɛ__#

#différence#
#di_feʁɑ̃_s_#

nais#
nɛ__#

#diffé
#di_fe

...

Align Augment

VC

ady arm bul dut fre geo gre hin hun ice jpn kor lit rum vie

100

A

A

A

A

A

A

A

A

A A

A

A

A
A
A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

0

WER
A

A

A

A

A

A

unaugmented, 100 examples

augmented from 100 examples

unaugmented, 500 examples

augmented from 500 examples

unaugmented, 3600 examples
augmented from 3600 examples

ady arm bul dut fre geo gre hin hun ice jpn kor lit rum vie

100

A

A

A

A

A

A

A

A

A A

A

A

A
A
A

A

A

A A

A

A

A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

0

WER

A

A

A

A

A

A

unaugmented, 100 examples

augmented from 100 examples

unaugmented, 500 examples

augmented from 500 examples

unaugmented, 3600 examples
augmented from 3600 examples

Figure 2: Main WER results on the SIGMORPHON test sets with augmented and unaugmented data.

Lang 100 100
aug

500 500
aug

full full
aug

ady 90.22 64.67 45.33 39.78 27.33 27.78
arm 82.89 45.33 33.11 24.89 14.89 13.33

bul 93.56 64.89 53.78 48.44 30.22 32.22
dut 95.33 69.11 50.67 42.00 18.22 19.11
fre 91.56 56.22 41.78 22.00 6.00 6.22
geo 79.78 40.89 37.33 38.89 27.78 33.33
gre 86.00 44.89 32.00 26.67 16.67 20.67
hin 90.44 46.22 34.44 21.33 9.56 9.11

hun 84.89 37.33 31.78 17.11 4.67 4.44

ice 91.11 66.89 39.33 33.78 9.56 10.67
jpn 95.56 62.22 28.22 22.00 6.67 8.67
kor 100.0 100.0 95.78 79.78 46.22 39.78

lit 94.89 70.89 42.89 46.44 21.78 26.22
rum 70.67 28.67 31.56 17.11 12.22 11.33

vie 96.44 74.89 37.33 30.89 7.11 11.78

Table 2: Word error rate (WER) results on the test set
when trained with 100 examples, 500 examples, and
the full data set, compared to augmentation (aug) for
(100,500,3600) ! 50,000 synthetic examples.

Deri and Knight, 2016), an avenue we did not ex-
plore in this work.

5 Conclusion

We have developed a method for data augmenta-
tion for the g2p task based on a 1-to-1 alignment of
input/output strings together with a confidence cal-
culation of what parts of the aligned strings can be
used to splice together an augmented dataset. Used
together with the popular Transformer seq2seq
model, we see significant and consistent improve-
ments on very small datasets of 100 examples, mod-
erate improvements on medium-size datasets (500
examples), with the advantage tapering off and
mostly disappearing completely with the shared
tasks’ datasets of 3,600 examples.

References

Antonios Anastasopoulos and Graham Neubig. 2019.
Pushing the limits of low-resource morphological in-
flection. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
984–996, Hong Kong, China. Association for Com-
putational Linguistics.

Toms Bergmanis, Katharina Kann, Hinrich Schütze,
and Sharon Goldwater. 2017. Training data aug-
mentation for low-resource morphological inflection.
In Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 31–39, Vancouver. Association for Computa-
tional Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared Task—
Morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
ogy, pages 10–22, Berlin, Germany. Association for
Computational Linguistics.

Aliya Deri and Kevin Knight. 2016. Grapheme-to-
phoneme models for (almost) any language. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 399–408, Berlin, Germany. Associa-
tion for Computational Linguistics.

Kyle Gorman, Lucas F. E. Ashby, Aaron Goyzueta,
Arya D. McCarthy, Shijie Wu, and Daniel You. 2020.
The SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. In Proceed-
ings of the 17th SIGMORPHON Workshop on Com-
putational Research in Phonetics, Phonology, and
Morphology.

Mans Hulden. 2017. A phoneme clustering algorithm
based on the obligatory contour principle. In Pro-
ceedings of the 21st Conference on Computational

Overview

Results

• An experiment on data augmentation
fo r l ow- resource G2P (< 1000
examples)

• Use SIGMORPHON task 1 data
• SIGMORPHON had no low-

resource track so we sample
uniformly from the original data
to create data sets of 100 & 500
examples

• We use the Transformer throughout
with the shared task baseline settings

• Use augmentation strategy based on 3
components (see right)

• Significant improvement with 100
examples, 500 examples, tapering off
with full data set of 3,600 examples

ta_xation
taksasjɔ̃_

déclaration
deklaʁasjɔ̃_

ambroisie
ɑ̃bʁwazi

commun
kɔmœ̃__

traite
tʁɛ_t_

• Use an MCMC aligner,
similar to EM aligners for
1-1 alignment, but faster

• Something like minimum-
edit distance doesn't
apply here since input-
output alphabets are
different

• Once alignments are
learned, we extract all
substring-pairs (input/
o u t p u t) f r o m t h e
beginning and end of the
input-output pair

• We estimate which pairs
are "reliable" g2p slices

p(o|i) = count(i : o) + ↵
P

ANY
count(i : ANY) + ↵|ANY| (1)

Here ↵ is a smoothing parameter and ANY—
through a slight notational abuse—represents all
the witnessed different output alignments for a par-
ticular input subsequence i. For example, if we
are calculating the conditional probability of some
output sequence, conditioned on an initial #pho-
sequence, and #pho has been aligned in the train-
ing data with #p, #f, and #fo, then ANY repre-
sents the set {#p, #f, #fo}.

To select which beginning and ending pieces can
be reliably used for creation of augmented data, we
declare a cutoff probability c = 0.98 and only use
those pieces i : o where p(o|i) > c. This yields a
large number of usable pieces for each language,
even in the lowest-resource setting of 100 training
examples.2 Note that the number of actual poten-
tial augmented input-output mappings corresponds
to roughly the square of the number of discovered
reliable beginning and ending pairings. We gener-
ate augmented words completely at random from
all the pieces available to us, except we limit the
output sequence length to 15 by exluding longer
sequences, and put an additional restriction on the
juncture where the splices come together regarding
consonants and vowels, discussed below.

2.2 Consonants and Vowels

After estimating p(o|i) for each seen subsequence
in the training data the resulting “reliable” pieces
can be spliced together to augment the data set,
by combining word-initial and word-final pieces.
Since phonological assimilations and coarticu-
lations are very common in vowel-vowel and
consonant-consonant sequences, and since we wish
to avoid generating unnatural syllables, we do not
splice together pieces where a slice ending in a
phoneme-side consonant would be paired up with
another one that begins with a vowel and vice versa.
This is also shown in the example Figure 1. To de-
termine which symbols on the phoneme side are
consonants and vowels, we use the unsupervised

2ady: 2933 (100), 11358 (500); arm: 2789 (100), 11840
(100), bul: 2862 (100), 10657 (500), dut: 4422 (100), 19058
(500); fre: 3005 (100), 11996 (500); 3089 (100), 13698
(500); gre: 3667 (100), 16341 (500); hin: 2073 (100), 8141
(500); hun: 3282 (100), 13748 (500); 2438 (100), 9556 (500);
jpn: 725 (100), 3252 (500); kor: 331 (100), 1280 (500);
lit: 4328 (100), 15414 (500); rum: 3330 (100) 12360 (500);
vie: 2567 (100), 12309 (500).

algorithm in Hulden (2017) to divide the set of
phonemes seen in the training data for a language
into consonants and vowels. Table 1 shows a selec-
tion of French “words” generated by this complete
process of aligning, determining useful pieces, and
splicing them together while avoiding CC or VV
sequences at the juncture of splicing.

For each language and each original-size data
set (100, 500, 3600) we generate 50,000 additional
training examples from the original training data.
To create the low-resource data training sets from
the shared task training sets, we randomly select
100 (min), or 500 (med) examples from the origi-
nal training data consisting of 3,600 examples. To
determine the cutoff where the data-augmentation
strategy stops paying dividends, we also create an
augmented data set of 50,000 examples from the
original data (we call the original task data the full)
data set.

2.3 Training details

Following Wu et al. (2020), we use a relatively
small transformer model (the Fairseq implemen-
tation; Ott et al. (2019)) with 4 encoder-decoder
layers, and 4 attention heads. The embedding size
is 256 and hidden layer size 1024. We use dropout
(0.3) during training and a batch size of 400, a
learning rate of 0.001. We train the models until no
improvement is seen on the dev-set for 5 epochs.

3 Results

The main results are shown in Table 2 and Figure 2.
As can be seen, there is a consistent pattern of
diminishing returns as more training data becomes
available, with word error rates being significantly
lower for almost all the augmented cases where
100 or 500 examples were used.

4 Related Work

Recurrent neural networks in a variety of models
have been applied to the g2p problem, including
LSTMs and bidirectional LSTMs (Rao et al., 2015),
as well as convolutional networks (Yolchuyeva
et al., 2019). The Transformer for g2p is inves-
tigated in Wu et al. (2020) and Yolchuyeva et al.
(2020), showing improvements over previous mod-
els, at least in high-resource settings. Low-resource
settings for g2p in general are examined in Jyothi
and Hasegawa-Johnson (2017), and a number of pa-
pers have experimented with high-resource to low-
resource transfer learning (Schlippe et al., 2014;

• Once we have all beginning and
ending slices, we estimate the
reliability of an i-o slice being
consistent by

• if p(o|i) > our cutoff (0.98) we use
the slice to create hallucinated
words

• We also use an unsupervised algorithm to
learn which phonemes are consonants
and vowels

• We only splice together pieces where we
get CV or VC at the juncture

bust by itself in the low-resource setting, at least
for morphology tasks. The multiple Transformer-
based baselines in the SIGMORPHON 2020 mor-
phological task did not provide any consistent im-
provement by data augmentation. Also, the best-
performing systems did not seem to use this strat-
egy, even in low-resource cases. For the grapheme-
to-phoneme task, it is therefore unclear if the Trans-
former would also benefit from one of these strate-
gies in low-resource scenarios. The SIGMOR-
PHON g2p task (task 1) featured uniform amounts
of training data of 3600 g/p word pairs, and so can
not be considered a low-resource task.

The different strategies to fortify seq2seq models
in the low-resource setting in other character-level
tasks are not all applicable to the g2p task, how-
ever. The array of mechanisms for learning to copy
the input—special copy symbols, pointer-generator
networks— favored by many low-resource mor-
phology systems do not naturally transfer to the g2p
task since the input and output pairs use different
alphabets. Data augmentation, however, remains a
potentially viable strategy.

In this paper we discuss experiments on the SIG-
MORPHON 2020 task 1 data sets where we ex-
plored data augmentation strategies for the g2p
setting. Our actual submission (team CU-Z) to the
task was a bidirectional LSTM encoder-decoder
which later turned out to perform much worse than
the Transformer model described in this paper. We
did not finish training the Transformer models be-
fore the submission deadline, and only submitted
the BiLSTM. In this paper we only discuss data
augmentation and the Transformer model.

2 Data Augmentation

We experimented with two strategies of data aug-
mentation: our first strategy was to identify in the
training data grapheme sequences in the beginning
of words and at the ends of words that (almost)
always map to the same phoneme sequence, such
as a word-initial c consistently mapping to k. Sub-
sequently we generated new training data by swap-
ping such sequences across words, generating new
words. This initial strategy failed to provide im-
provements on the development set, and we moved
to a more refined version of this idea, discussed in
more detail below.

procurions p K O k y K j Õ

reconnaituer K @ k O n E t 4 e
brancétude b K Ã S e t y d
davasonnage d a v Ã s O n a Z

magazoulevard m a g a z u l v a K

oucoutume w E k u t y m
socendredi s O s Ã d K @ d i
thapu t a p y
sedi s @ d i
sagementsier s a Z m Ã z j e

Table 1: Example augmented French data from the orig-
inal min data set that contains 100 examples. In total,
50,000 examples such as the ones shown here are cre-
ated from each data set.

2.1 Slice-and-shuffle

In our main strategy, we first perform a 1-to-1
alignment of the input-output data, yielding align-
ments such as are shown in Figure 1. For the align-
ment, we use an MCMC-algorithm originally devel-
oped by the second author for the SIGMORPHON
2016 shared task baseline for morphological in-
flection (Cotterell et al., 2016), largely similar to
Expectation-Maximization based models (Ristad
and Yianilos, 1998; Novak et al., 2012), but us-
ing an MCMC sampler instead. After the align-
ment, we investigate how consistently some part of
the word-initial substring graphemes #i1, . . . , im
maps to the same phonemes #o1, . . . , on, and
likewise for the word-final parts i1, . . . , im# and
o1, . . . , on#. We use # here as a symbol to
denote either beginning-of-word or end-of-word.
Whichever is intended should be clear from the
context.

For example, in French, the initial grapheme
sequence #poin, whenever found in the data, is
always aligned with #pwẼ, and the final grapheme
sequence parer# is consistently aligned with
the phoneme sequence paKe#. Such pieces can
then be used to create new grapheme/phoneme
pairs in an augmented training data set, such as
poinparer ! pwẼpaKe. See Figure 1 for an-
other example.

In particular, for an input subsequence i, we
estimate its reliability as being associated with an
output subsequence o as the conditional probability
of the output, given the input in the usual way as:

