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Preface

Welcome to the 17th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology,
and Morphology, to be held on July 10, 2020 as part of a virtual ACL. The workshop aims to
bring together researchers interested in applying computational techniques to problems in morphology,
phonology, and phonetics. Our program this year highlights the ongoing and important interaction
between work in computational linguistics and work in theoretical linguistics. This year, work in
both theoretical phonology and computational morphology were strongly represented in the workshop
submissions. We received 14 submissions, and after a competitive reviewing process, we accepted 8.
The workshop is privileged to present four invited talks this year, all from very respected members of the
SIGMORPHON community.

This year also marks the fifth iteration of the SIGMORPHON Shared Task. Unlike previous years, this
year, we hosted three distinct tasks:

Task 0: SIGMORPHON’s fifth installment of its inflection generation shared task focuses on languages
that are typologically diverse from languages in our previous tasks. Many of these languages are
extremely low-resource. In this edition, we are specifically interested in inflection generation systems’
ability to generalize to new languages, including languages that are typologically distinct. For example,
if you have a neural network architecture that works well for a sample of Indo-European languages,
should you expect the same architecture to also work well for Tupi—Guarani languages (where nouns are
"declined" for tense)?

Task 1: This new task, the first of its kind at SIGMORPHON, focuses on grapheme-to-phoneme
conversion. This technology is a key component of speech recognition and synthesis engines, but much
of the existing published research is either limited to a small number of closely related languages/scripts,
or uses proprietary data sets, limiting replicability. The training and development data consists of words
and corresponding IPA pronunciations extracted from Wiktionary, a free online encyclopedia, in 15
languages and scripts. 9 teams submitted a total of 23 different systems.

Task 2: Task 2 fills the gap between recent SIGMORPHON shared tasks on morphological inflection
learned from limited training data and completely unsupervised morphological generation by proposing
the task of unsupervised morphological paradigm completion. The goal is to generate complete inflection
tables exclusively from raw text and a lemma list for a known part of speech. 3 teams submitted a total
of 7 different systems to tackle this new task.

We are grateful to the program committee for their careful and thoughtful reviews of the papers submitted
this year. Likewise, we are thankful to the shared task organizers for their hard work in preparing the
shared tasks. We are looking forward to a workshop covering a wide range of topics, and we hope for
lively discussions.

Garrett Nicolai
Kyle Gorman
Ryan Cotterell
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Abstract

A broad goal in natural language processing
(NLP) is to develop a system that has the capac-
ity to process any natural language. Most sys-
tems, however, are developed using data from
just one language such as English. The SIG-
MORPHON 2020 shared task on morpholog-
ical reinflection aims to investigate systems’
ability to generalize across typologically dis-
tinct languages, many of which are low re-
source. Systems were developed using data
from 45 languages and just 5 language fam-
ilies, fine-tuned with data from an additional
45 languages and 10 language families (13 in
total), and evaluated on all 90 languages. A
total of 22 systems (19 neural) from 10 teams
were submitted to the task. All four winning
systems were neural (two monolingual trans-
formers and two massively multilingual RNN-
based models with gated attention). Most
teams demonstrate utility of data hallucination
and augmentation, ensembles, and multilin-
gual training for low-resource languages. Non-
neural learners and manually designed gram-
mars showed competitive and even superior
performance on some languages (such as In-
grian, Tajik, Tagalog, Zarma, Lingala), espe-
cially with very limited data. Some language
families (Afro-Asiatic, Niger-Congo, Turkic)
were relatively easy for most systems and
achieved over 90% mean accuracy while oth-
ers were more challenging.

1 Introduction

Human language is marked by considerable diver-
sity around the world. Though the world’s lan-
guages share many basic attributes (e.g., Swadesh,

1

ryan.cotterell@ethz.inf.ch

1950 and more recently, List et al., 2016), gram-
matical features, and even abstract implications
(proposed in Greenberg, 1963), each language nev-
ertheless has a unique evolutionary trajectory that
is affected by geographic, social, cultural, and
other factors. As a result, the surface form of
languages varies substantially. The morphology
of languages can differ in many ways: Some
exhibit rich grammatical case systems (e.g., 12
in Erzya and 24 in Veps) and mark possessive-
ness, others might have complex verbal morphol-
ogy (e.g., Oto-Manguean languages; Palancar and
Léonard, 2016) or even “decline” nouns for tense
(e.g., Tupi—Guarani languages). Linguistic typol-
ogy is the discipline that studies these variations
by means of a systematic comparison of languages
(Croft, 2002; Comrie, 1989). Typologists have de-
fined several dimensions of morphological varia-
tion to classify and quantify the degree of cross-
linguistic variation. This comparison can be chal-
lenging as the categories are based on studies of
known languages and are progressively refined
with documentation of new languages (Haspel-
math, 2007). Nevertheless, to understand the po-
tential range of morphological variation, we take a
closer look at three dimensions here: fusion, inflec-
tional synthesis, and position of case affixes (Dryer
and Haspelmath, 2013).

Fusion, our first dimension of variation, refers
to the degree to which morphemes bind to one an-
other in a phonological word (Bickel and Nichols,
2013b). Languages range from strictly isolat-
ing (i.e., each morpheme is its own phonolog-
ical word) to concatenative (i.e., morphemes

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 1-39
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bind together within a phonological word); non-
linearities such as ablaut or tonal morphology
can also be present. From a geographic perspec-
tive, isolating languages are found in the Sahel
Belt in West Africa, Southeast Asia and the Pa-
cific. Ablaut—concatenative morphology and tonal
morphology can be found in African languages.
Tonal—concatenative morphology can be found in
Mesoamerican languages (e.g., Oto-Manguean).
Concatenative morphology is the most common
system and can be found around the world. Inflec-
tional synthesis, the second dimension considered,
refers to whether grammatical categories like tense,
voice or agreement are expressed as affixes (syn-
thetic) or individual words (analytic) (Bickel and
Nichols, 2013c). Analytic expressions are com-
mon in Eurasia (except the Pacific Rim, and the Hi-
malaya and Caucasus mountain ranges), whereas
synthetic expressions are used to a high degree in
the Americas. Finally, affixes can variably sur-
face as prefixes, suffixes, infixes, or circumfixes
(Dryer, 2013). Most Eurasian and Australian lan-
guages strongly favor suffixation, and the same
holds true, but to a lesser extent, for South Ameri-
can and New Guinean languages (Dryer, 2013). In
Mesoamerican languages and African languages
spoken below the Sahara, prefixation is dominant
instead.

These are just three dimensions of variation in
morphology, and the cross-linguistic variation is
already considerable. Such cross-lingual variation
makes the development of natural language pro-
cessing (NLP) applications challenging. As Ben-
der (2009, 2016) notes, many current architectures
and training and tuning algorithms still present
language-specific biases. The most commonly
used language for developing NLP applications is
English. Along the above dimensions, English is
productively concatenative, a mixture of analytic
and synthetic, and largely suffixing in its inflec-
tional morphology. With respect to languages that
exhibit inflectional morphology, English is rela-
tively impoverished.! Importantly, English is just
one morphological system among many. A larger
goal of natural language processing is that the sys-
tem work for any presented language. If an NLP
system is trained on just one language, it could
be missing important flexibility in its ability to ac-
count for cross-linguistic morphological variation.
"Note that many languages exhibit no inflectional morphol-

ogy e.g., Mandarin Chinese, Yoruba, etc.: Bickel and
Nichols (2013a).

In this year’s iteration of the SIGMORPHON
shared task on morphological reinflection, we
specifically focus on typological diversity and aim
to investigate systems’ ability to generalize across
typologically distinct languages many of which
are low-resource. For example, if a neural net-
work architecture works well for a sample of Indo-
European languages, should the same architecture
also work well for Tupi—Guarani languages (where
nouns are “declined” for tense) or Austronesian
languages (where verbal morphology is frequently
prefixing)?

2 Task Description

The 2020 iteration of our task is similar to
CoNLL-SIGMORPHON 2017 (Cotterell et al.,
2017) and 2018 (Cotterell et al., 2018) in that
participants are required to design a model that
learns to generate inflected forms from a lemma
and a set of morphosyntactic features that derive
the desired target form. For each language we
provide a separate training, development, and
test set. More historically, all of these tasks
resemble the classic “wug”-test that Berko (1958)
developed to test child and human knowledge of
English nominal morphology.

Unlike the task from earlier years, this year’s
task proceeds in three phases: a Development
Phase, a Generalization Phase, and an Evaluation
Phase, in which each phase introduces previously
unseen data. The task starts with the Develop-
ment Phase, which was an elongated period of
time (about two months), during which partici-
pants develop a model of morphological inflection.
In this phase, we provide training and develop-
ment splits for 45 languages representing the Aus-
tronesian, Niger-Congo, Oto-Manguean, Uralic
and Indo-European language families. Table 1 pro-
vides details on the languages. The Generaliza-
tion Phase is a short period of time (it started
about a week before the Evaluation Phase) during
which participants fine-tune their models on new
data. At the start of the phase, we provide train-
ing and development splits for 45 new languages
where approximately half are genetically related
(belong to the same family) and half are geneti-
cally unrelated (are isolates or belong to a different
family) to the languages presented in the Develop-
ment Phase. More specifically, we introduce (sur-
prise) languages from Afro-Asiatic, Algic, Dravid-
ian, Indo-European, Niger-Congo, Sino-Tibetan,



Siouan, Songhay, Southern Daly, Tungusic, Tur-
kic, Uralic, and Uto-Aztecan families. See Table 2
for more details.

Finally, test splits for all 90 languages are re-
leased in the Evaluation Phase. During this phase,
the models are evaluated on held-out forms. Impor-
tantly, the languages from both previous phases are
evaluated simultaneously. This way, we evaluate
the extent to which models (especially those with
shared parameters) overfit to the development data:
a model based on the morphological patterning of
the Indo-European languages may end up with a
bias towards suffixing and will struggle to learn
prefixing or infixation.

3 Meet our Languages

In the 2020 shared task we cover 15 language fam-
ilies: Afro-Asiatic, Algic, Austronesian, Dravid-
ian, Indo-European, Niger-Congo, Oto-Manguean,
Sino-Tibetan, Siouan, Songhay, Southern Daly,
Tungusic, Turkic, Uralic, and Uto-Aztecan.> Five
language families were used for the Development
phase while ten were held out for the Generaliza-
tion phase. Tab. 1 and Tab. 2 provide informa-
tion on the languages, their families, and sources
of data. In the following section, we provide an
overview of each language family’s morphological
system.

3.1 Afro-Asiatic

The Afro-Asiatic language family, consisting of
six branches and over 300 languages, is among
the largest language families in the world. It is
mainly spoken in Northern, Western and Central
Africa as well as West Asia and spans large mod-
ern languages such as Arabic, in addition to an-
cient languages like Biblical Hebrew. Similarly,
some of its languages have a long tradition of writ-
ten form, while others have yet to incorporate a
writing system. The six branches differ most no-
tably in typology and syntax, with the Chadic lan-
guage being the main source of differences, which
has sparked discussion of the division of the fam-
ily (Frajzyngier, 2018). For example, in the Egyp-
tian and Semitic branches, the root of a verb may
not contain vowels, while this is allowed in Chadic.
Although only four of the six branches, excluding
Chadic and Omotic, use a prefix and suffix in con-
jugation when adding a subject to a verb, it is con-

2The data splits are availableatht tps: / /github. com/
sigmorphon2020/task0-data/

sidered an important characteristic of the family.
In addition, some of the families in the phylum use
tone to encode tense, modality and number among
others. However, all branches use objective and
passive suffixes. Markers of tense are generally
simple, whereas aspect is typically distinguished
with more elaborate systems.

3.2 Algic

The Algic family embraces languages native to
North America—more specifically the United
States and Canada—and contain three branches.
Of these, our sample contains Cree, the language
from the largest genus, Algonquian, from which
most languages are now extinct. The Algonquian
genus is characterized by its concatenative mor-
phology. Cree morphology is also concatenative
and suffixing. It distinguishes between impersonal
and non-impersonal verbs and presents four ap-
parent declension classes among non-impersonal
verbs.

3.3 Austronesian

The Austronesian family of languages is largely
comprised of languages from the Greater Central
Philippine and Oceanic regions. They are charac-
terized by limited morphology, mostly prefixing in
nature. Additionally, tense—aspect affixes are pre-
dominantly seen as prefixes, though some suffixes
are used. In the general case, verbs do not mark
number, person, or gender. In Maori, verbs may be
suffixed with a marker indicating the passive voice.
This marker takes the form of one of twelve end-
ings. These endings are difficult to predict as the
language has undergone a loss of word-final conso-
nants and there is no clear link between a stem and
the passive suffix that it employs (Harlow, 2007).

3.4 Dravidian

The family of Dravidian languages comprises sev-
eral languages which are primarily spoken across
Southern India and Northern Sri Lanka, with over
200 million speakers. The shared task includes
Kannada and Telugu. Dravidian languages primar-
ily use the SOV word order. They are agglutina-
tive, and primarily use suffixes. A Dravidian verb
indicates voice, number, tense, aspect, mood and
person, through the affixation of multiple suffixes.
Nouns indicate number, gender and case.
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Figure 1: Languages in our sample colored by family.

3.5 Indo-European

Languages in the Indo-European family are native
to most of Europe and a large part of Asia—with
our sample including languages from the genera:
Germanic, Indic, Iranian, and Romance. This is
(arguably) the most well studied language family,
containing a few of the highest-resource languages
in the world.

Romance The Romance genus comprises of a
set of fusional languages evolved from Latin. They
traditionally originated in Southern and Southeast-
ern Europe, though they are presently spoken in
other continents such Africa and the Americas. Ro-
mance languages mark tense, person, number and
mood in verbs, and gender and number in nouns.
Inflection is primarily achieved through suffixes,
with some verbal person syncretism and suppletion
for high-frequency verbs. There is some morpho-
logical variation within the genus, such as French,
which exhibits comparatively less inflection, and
Romanian has comparatively more—it still marks
case.

Germanic The Germanic genus comprises sev-
eral languages which originated in Northern and
Northwestern Europe, and today are spoken in
many parts of the world. Verbs in Germanic lan-
guages mark tense and mood, in many languages

person and number are also marked, predomi-
nantly through suffixation. Some Germanic lan-
guages exhibit widespread Indo-European ablaut.
The gendering of nouns differs between Germanic
languages: German nouns can be masculine, femi-
nine or neuter, while English nouns are not marked
for gender. In Danish and Swedish, historically
masculine and feminine nouns have merged to
form one common gender, so nouns are either com-
mon or neuter. Marking of case also differs be-
tween the languages: German nouns have one of
four cases and this case is marked in articles and
adjectives as well as nouns and pronouns, while
English does not mark noun case (although Old En-
glish, which also appears in our language sample,
does).

Indo-Iranian The Indo-Iranian genus contains
languages spoken in Iran and across the Indian
subcontinent. Over 1.5 billion people worldwide
speak an Indo-Iranian language. Within the Indo-
European family, Indo-Iranian languages belong
to the Satem group of languages. Verbs in Indo-
Iranian languages indicate tense, aspect, mood,
number and person. In languages such as Hindi
verbs can also express levels of formality. Noun
gender is present in some Indo-Iranian languages,
such as Hindi, but absent in languages such as Per-
sian. Nouns generally are marked for case.



Development

Family | Genus | ISO 639-3 | Language | Source of Data
Austronesian Barito mlg (plt) Malagasy Kasahorow (2015a)
Greater Central Philippine | ceb Cebuano Reyes (2015)
Greater Central Philippine | hil Hiligaynon Santos (2018)
Greater Central Philippine | tgl Tagalog NIU (2017)
Oceanic mao (mri) | Maori Moorfield (2019)
Indo-European | Germanic ang Old English UniMorph
Germanic dan Danish UniMorph
Germanic deu German UniMorph
Germanic eng English UniMorph
Germanic frr North Frisian UniMorph
Germanic gmh Middle High German UniMorph
Germanic isl Icelandic UniMorph
Germanic nld Dutch UniMorph
Germanic nob Norwegian Bokmal UniMorph
Germanic swe Swedish UniMorph
Niger-Congo Bantoid kon (kng) | Kongo Kasahorow (2016)
Bantoid lin Lingala Kasahorow (2014a)
Bantoid lug Luganda Namono (2018)
Bantoid nya Chewa Kasahorow (2019a)
Bantoid sot Sotho Kasahorow (2020)
Bantoid swa (swh) | Swahili Kasahorow (2012b)
Bantoid zul Zulu Kasahorow (2015b)
Kwa aka Akan Imbeah (2012)
Kwa gaa Ga Kasahorow (2012a)
Oto-Manguean | Amuzgoan azg San Pedro Amuzgos Amuzgo Feist and Palancar (2015)
Chichimec pei Chichimeca-Jonaz Feist and Palancar (2015)
Chinantecan cpa Tlatepuzco Chinantec Feist and Palancar (2015)
Mixtecan xty Yoloxdéchitl Mixtec Feist and Palancar (2015)
Otomian ote Mezquital Otomi Feist and Palancar (2015)
Otomian otm Sierra Otomi Feist and Palancar (2015)
Zapotecan cly Eastern Chatino of San Juan Quiahije | Cruz et al. (2020)
Zapotecan ctp Eastern Chatino of Yaitepec Feist and Palancar (2015)
Zapotecan czn Zenzontepec Chatino Feist and Palancar (2015)
Zapotecan zZpv Chichicapan Zapotec Feist and Palancar (2015)
Uralic Finnic est Estonian UniMorph
Finnic fin Finnish UniMorph
Finnic izh Ingrian UniMorph
Finnic krl Karelian Zaytseva et al. (2017)
Finnic liv Livonian UniMorph
Finnic vep Veps Zaytseva et al. (2017)
Finnic vot Votic UniMorph
Mari mhr Meadow Mari Arkhangelskiy et al. (2012)
Mordvin mdf Moksha Arkhangelskiy et al. (2012)
Mordvin myv Erzya Arkhangelskiy et al. (2012)
Saami sme Northern Sami UniMorph

Table 1: Development languages used in the shared task.

3.6 Niger-Congo

Our language sample includes two genera from
the Niger—Congo family, namely Bantoid and Kwa
languages. These have mostly exclusively con-
catenative fusion, and single exponence in verbal
tense—aspect—-mood. The inflectional synthesis of
verbs is moderately high, e.g. with 4-5 classes per
word in Swahili and Zulu. The locus of marking
is inconsistent (it falls on both heads and depen-
dents), and most languages are are predominantly
prefixing. Full and partial reduplication is attested
inmost languages. Verbal person—number markers
tend to be syncretic.

As for nominal classes, Bantoid languages are

characterized by a large amount of grammatical
genders (often more than 5) assigned based on both
semantic and formal rules, whereas some Akan lan-
guages (like Ewe) lack a gender system. Plural
tends to be always expressed by affixes or other
morphological means. Case marking is generally
absent or minimal. As for verbal classes, aspect is
grammaticalized in Akhan (Kwa) and Zulu (Ban-
toid), but not in Luganda and Swahili (Bantoid).
Both past and future tenses are inflectional in Ban-
toid languages. 2-3 degrees of remoteness can
be distinguished in Zulu and Luganda, but not in
Swahili. On the other hand, Akan (Kwa) has no
opposition between past and non-past. There are



Generalization (Surprise)

Family | Genus | ISO 639-3 | Language Source of Data
Afro-Asiatic Semitic mlt Maltese UniMorph
Lowland East Cushitic orm Oromo Kasahorow (2017)
Semitic syc Syriac UniMorph
Algic | Algonquian | cre | Plains Cree Hunter (1923)
Tungusic | Tungusic | evn | Evenki Klyachko et al. (2020)
Turkic Turkic aze (azb) Azerbaijani UniMorph
Turkic bak Bashkir UniMorph
Turkic crh Crimean Tatar UniMorph
Turkic kaz Kazakh Nabiyev (2015); Turkicum (2019a)
Turkic kir Kyrgyz Aytnatova (2016)
Turkic kjh Khakas UniMorph
Turkic tuk Turkmen Abdulin (2016); US Embassy (2018)
Turkic uig Uyghur Kadeer (2016)
Turkic uzb Uzbek Abdullaev (2016); Turkicum (2019b)
Dravidian Southern Dravidian kan Kannada UniMorph
South-Central Dravidian | tel Telugu UniMorph
Indo-European | Indic ben Bengali UniMorph
Indic hin Hindi UniMorph
Indic san Sanskrit UniMorph
Indic urd Urdu UniMorph
Iranian fas (pes) Persian UniMorph
Iranian pus (pst) Pashto UniMorph
Iranian tgk Tajik UniMorph
Romance ast Asturian UniMorph
Romance cat Catalan UniMorph
Romance frm Middle French UniMorph
Romance fur Friulian UniMorph
Romance glg Galician UniMorph
Romance 11d Ladin UniMorph
Romance vec Venetian UniMorph
Romance Xno Anglo-Norman UniMorph
West Germanic gml Middle Low German | UniMorph
West Germanic gsw Swiss German Egli-Wildi (2007)
North Germanic nno Norwegian Nynorsk | UniMorph
Niger-Congo | Bantoid | sna | Shona | Kasahorow (2014b); Nandoro (2018)
Sino-Tibetan | Bodic | bod | Tibetan | Dietal. (2019)
Siouan | Core Siouan | dak | Dakota | LaFontaine and McKay (2005)
Songhay | Songhay | dje | Zarma | Kasahorow (2019b)
Southern Daly | Murrinh-Patha | mwf | Murrinh-Patha | Mansfield (2019)
Uralic Permic kpv Komi-Zyrian Arkhangelskiy et al. (2012)
Finnic lud Ludic Zaytseva et al. (2017)
Finnic olo Livvi Zaytseva et al. (2017)
Permic udm Udmurt Arkhangelskiy et al. (2012)
Finnic vIo Voro Iva (2007)
Uto-Aztecan | Tepiman | ood | O’odham | Zepeda (2003)

Table 2: Surprise languages used in the shared task.

no grammatical evidentials. Chichimec and Pame) others have ten tones (e.g.,
the Eastern Chatino languages of the Zapotecan

3.7 Oto-Manguean branch, Palancar and Léonard (2016)).

The Oto-Manguean languages are a diverse family
of tonal languages spoken in central and southern
Mexico. Even though all of these languages are
tonal, the tonal system within each language varies
widely. Some have an inventory of two tones (e.g.,

Oto-Manguean languages are also rich in tonal
morphology.  The inflectional system marks
person—number and aspect in verbs and person—
number in adjectives and noun possessions, rely-
ing heavily on tonal contrasts. Other interesting as-



pects of Oto-Manguean languages include the fact
that pronominal inflections use a system of encli-
tics, and first and second person plural has a dis-
tinction between exclusive and inclusive (Camp-
bell, 2016). Tone marking schemes in the writ-
ing systems also vary greatly. Some writing sys-
tems do not represent tone, others use diacritics,
and others represent tones with numbers. In lan-
guages that use numbers, single digits represent
level tones and double digits represent contour
tones. For example, in San Juan Quiahije of East-
ern Chatino number 1 represents high tone, num-
ber 4 represents low tone, and numbers 14 repre-
sent a descending tone contour and numbers 42 rep-
resent an ascending tone contour Cruz (2014).

3.8 Sino-Tibetan

The Sino-Tibetan family is represented by the
Tibetan language. Tibetan uses an abugida script
and contains complex syllabic components in
which vowel marks can be added above and below
the base consonant. Tibetan verbs are inflected
for tense and mood. Previous studies on Tibetan
morphology (Di et al., 2019) indicate that the
majority of mispredictions produced by neural
models are due to allomorphy. This is followed
by generation of nonce words (impossible combi-
nations of vowel and consonant components).

3.9 Siouan

The Siouan languages are located in North Amer-
ica, predominantly along the Mississippi and Mis-
souri Rivers and in the Ohio Valley. The fam-
ily is represented in our task by Dakota, a criti-
cally endangered language spoken in North and
South Dakota, Minnesota, and Saskatchewan. The
Dakota language is largely agglutinating in its
derivational morphology and fusional in its inflec-
tional morphology with a mixed affixation system
(Rankin et al., 2003). The present task includes
verbs, which are marked for first and second per-
son, number, and duality. All three affixation
types are found: person was generally marked by
an infix, but could also appear as a prefix, and plu-
rality was marked by a suffix. Morphophonologi-
cal processes of fortition and vowel lowering are
also present.

3.10 Songhay

The Songhay family consists of around eleven or
twelve languages spoken in Mali, Niger, Benin,

Burkina Faso and Nigeria. In the shared task we
use Zarma, the most widely spoken Songhay lan-
guage. Most of the Songhay languages are pre-
dominantly SOV with medium-sized consonant in-
ventories (with implosives), five phonemic vowels,
vowel length distinctions, and word level tones,
which also are used to distinguish nouns, verbs,
and adjectives (Heath, 2014).

3.11 Southern Daly

The Southern Daly is a small language family of
the Northern Territory in Australia that consists of
two distantly related languages. In the current task
we only have one of the languages, Murrinh-patha
(which was initially thought to be a language iso-
late). Murrinh-patha is classified as polysynthetic
with highly complex verbal morphology. Verbal
roots are surrounded by prefixes and suffixes that
indicate tense, mood, object, subject. As Mans-
field (2019) notes, Murrinh-patha verbs have 39
conjugation classes.

3.12 Tungusic

Tungusic languages are spoken principally in Rus-
sia, China and Mongolia. In Russia they are con-
centrated in north and eastern Siberia and in China
in the east, in Manchuria. The largest languages
in the family are Xibe, Evenki and Even; we use
Evenki in the shared task. The languages are of the
agglutinating morphological type with a moderate
number of cases, 7 for Xibe and 13 for Evenki. In
addition to case markers, Evenki marks possession
in nominals (including reflexive possession) and
distinguishes between alienable and inalienable
possession. In terms of morphophonological pro-
cesses, the languages exhibit vowel harmony, con-
sonant alternations and phonological vowel length.

3.13 Turkic

Languages of the Turkic family are primarily spo-
ken in Central Asia. The family is morphologi-
cally concatenative, fusional, and suffixing. Tur-
kic languages generally exhibit back vowel har-
mony, with the notable exception of Uzbek. In ad-
dition to harmony in backness, several languages
also have labial vowel harmony (e.g., Kyrgyz,
Turkmen, among others). In addition, most of the
languages have dorsal consonant allophony that ac-
companies back vowel harmony. Additional mor-
phophonological processes include vowel epenthe-
sis and voicing assimilation. Selection of the in-
flectional allomorph can frequently be determined



from the infinitive morpheme (which frequently re-
veals vowel backness and roundedness) and also
the final segment of the stem.

3.14 Uralic

The Uralic languages are spoken in Russia from
the north of Siberia to Scandinavia and Hungary
in Europe. They are agglutinating with some sub-
groups displaying fusional characteristics (e.g., the
Sami languages). Many of the languages have
vowel harmony. The languages have almost com-
plete suffixal morphology and a medium-sized
case inventory, ranging from 5-6 cases to num-
bers in the high teens. Many of the larger case
paradigms are made up of spatial cases, sometimes
with distinctions for direction and position. Most
of the languages have possessive suffixes, which
can express possession, or agreement in non-finite
clauses. The paradigms are largely regular, with
few, if any, irregular forms. Many exhibit complex
patterns of consonant gradation—consonant muta-
tions that occur in specific morphological forms in
some stems. Which gradation category a stem be-
longs to in often unpredictable. The languages spo-
ken in Russia are typically SOV, while those in Eu-
rope have SVO order.

3.15 Uto-Aztecan

The Uto-Aztecan family is represented by the To-
hono O’odham (Papago—Pima) language spoken
along the US—Mexico border in southern Arizona
and northern Sonora. O’odham is agglutinative
with a mixed prefixing and suffixing system. Nom-
inal and verbal pluralization is frequently realized
by partial reduplication of the initial consonant
and/or vowel, and occasionally by final consonant
deletion or null affixation. Processes targeting
vowel length (shortening or lengthening) are also
present. A small number of verbs exhibit supple-
tion in the past tense.

4 Data Preparation

4.1 Data Format

Similar to previous years, training and develop-
ment sets contain triples consisting of a lemma,
a target form, and morphosyntactic descriptions
(MSDs, or morphological tags).’> Test sets only
contain two fields, i.e., target forms are omitted.
All data follows UTF-8 encoding.

3Each MSD is a set of features separated by semicolons.

4.2 Conversion and Canonicalization

A significant amount of data for this task was
extracted from corresponding (language-specific)
grammars. In order to allow cross-lingual com-
parison, we manually converted their features
(tags) into the UniMorph format (Sylak-Glassman,
2016). We then canonicalized the converted lan-
guage data* to make sure all tags are consistently
ordered and no category (e.g., “Number™) is as-
signed two tags (e.g., singular and plural).?

4.3 Splitting

We use only noun, verb, and adjective forms to
construct training, development, and evaluation
sets. We de-duplicate annotations such that there
are no multiple examples of exact lemma-form-
tag matches. To create splits, we randomly sam-
ple 70%, 10%, and 20% for train, development,
and test, respectively. We cap the training set size
to 100k examples for each language; where lan-
guages exceed this (e.g., Finnish), we subsample
to this point, balancing lemmas such that all forms
for a given lemma are either included or discarded.
Some languages such as Zarma (dje), Tajik (tgk),
Lingala (lin), Ludian* (lud), Maori (mao), Sotho
(sot), Voro (vro), Anglo-Norman (xno), and Zulu
(zul) contain less than 400 training samples and are
extremely low-resource.® Tab. 6 and Tab. 7 in the
Appendix provide the number of samples for ev-
ery language in each split, the number of samples
per lemma, and statistics on inconsistencies in the
data.

5 Baseline Systems

The organizers provided two types of pre-trained
baselines. Their use was optional.

5.1 Non-neural

The first baseline was a non-neural system that had
been used as a baseline in earlier shared tasks on
morphological reinflection (Cotterell et al., 2017,
2018). The system first heuristically extracts
lemma-to-form transformations; it assumes that
these transformations are suffix- or prefix-based.

“Using the UniMorph schema canonicalization script
https://github.com/unimorph/um-
canonicalize

SConversion schemes and canonicalization  scripts
are available at https://github.com/
sigmorphon2020/task0O-data

®We also note that Ludian contained inconsistencies in data
due to merge of various dialects.



A simple majority classifier is used to apply the
most frequent suitable transformation to an input
lemma, given the morphological tag, yielding the
output form. See Cotterell et al. (2017) for further
details.

5.2 Neural

Neural baselines were based on a neural transducer
(Wu and Cotterell, 2019), which is essentially a
hard monotonic attention model (mono-*). The
second baseline is a transformer (Vaswani et al.,
2017) adopted for character-level tasks that cur-
rently holds the state-of-the-art on the 2017 SIG-
MORPHON shared task data (Wu et al., 2020,
trm-*). Both models take the lemma and mor-
phological tags as input and output the target in-
flection. The baseline is further expanded to in-
clude the data augmentation technique used by
Anastasopoulos and Neubig (2019, —aug-) (con-
ceptually similar to the one proposed by Silfver-
berg et al. (2017)). Relying on a simple character-
level alignment between lemma and form, this
technique replaces shared substrings of length >
3 with random characters from the language’s al-
phabet, producing hallucinated lemma—tag—form
triples. Both neural baselines were trained in
mono- (*-single) and multilingual (shared pa-
rameters among the same family, *~shared) set-
tings.

6 Competing Systems

As Tab. 3 shows, 10 teams submitted 22 systems
in total, out of which 19 were neural. Some teams
such as ETH Zurich and UIUC built their mod-
els on top of the proposed baselines. In partic-
ular, ETH Zurich enriched each of the (multi-
lingual) neural baseline models with exact decod-
ing strategy that uses Dijkstra’s search algorithm.
UIUC enriched the transformer model with syn-
chronous bidirectional decoding technique (Zhou
et al., 2019) in order to condition the prediction
of an affix character on its environment from both
sides. (The authors demonstrate positive effects
in Oto-Manguean, Turkic, and some Austronesian
languages.)

A few teams further improved models that
were among top performers in previous shared
tasks. IMS and Flexica re-used the hard mono-
tonic attention model from (Aharoni and Goldberg,
2017). IMS developed an ensemble of two models
(with left-to-right and right-to-left generation or-

der) with a genetic algorithm for ensemble search
(Haque et al., 2016) and iteratively provided hal-
lucinated data. Flexica submitted two neural sys-
tems. The first model (flexica-02-1) was
multilingual (family-wise) hard monotonic atten-
tion model with improved alignment strategy. This
model is further improved (flexica-03-1)
by introducing a data hallucination technique
which is based on phonotactic modelling of
extremely low-resource languages (Shcherbakov
et al., 2016). LTI focused on their earlier model
(Anastasopoulos and Neubig, 2019), a neural
multi-source encoder—decoder with two-step at-
tention architecture, training it with hallucinated
data, cross-lingual transfer, and romanization of
scripts to improve performance on low-resource
languages. DeepSpin reimplemented gated sparse
two-headed attention model from Peters and Mar-
tins (2019) and trained it on all languages at
once (massively multilingual). The team exper-
imented with two modifications of the softmax
function: sparsemax (Martins and Astudillo, 2016,
deepspin-02-1)and 1.5-entmax (Peters et al.,
2019, deepspin-01-1).

Many teams based their models on the
transformer architecture. NYU-CUBoulder
experimented with a vanilla transformer model
(NYU-CUBoulder-04-0), apointer-generator
transformer that allows for a copy mechanism
(NYU-CUBoulder-02-0), and ensembles
of three (NYU-CUBoulder-01-0) and five
(NYU-CUBoulder-03-0) pointer-generator
transformers. For languages with less than 1,000
training samples, they also generate hallucinated
data. CULing developed an ensemble of three
(monolingual) transformers with identical ar-
chitecture but different input data format. The
first model was trained on the initial data format
(lemma, target tags, target form). For the other
two models the team used the idea of lexeme’s
principal parts (Finkel and Stump, 2007) and aug-
mented the initial input (that only used the lemma
as a source form) with entries corresponding to
other (non-lemma) slots available for the lexeme.
The CMU Tartan team compared performance of
models with transformer-based and LSTM-based
encoders and decoders. The team also compared
monolingual to multilingual training in which they
used several (related and unrelated) high-resource
languages for low-resource language training.

Although the majority of submitted systems



Team Description System Model Features
Neural | Ensemble | Multilingual | Hallucination
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Baseline Wu and Cotterell (2019) mono-aug-single
mono-shared

mono-aug-shared
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Wau et al. (2020) Eﬂ:iﬁg;;ngle
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cmu_tartan 00-0
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cmu_tartan 01-1
cmu_tartan 02-1
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flexica-02-1
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ETH Zurich Forster and Meister (2020)

Flexica Scherbakov (2020)

AN ANNANN

<

IMS IMS-00-0
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Table 3: The list of systems submitted to the shared task.

were neural, some teams experimented with non- 7 Evaluation
neural approaches showing that in certain sce-
narios they might surpass neural systems. A
large group of researchers from CU7565 man-
ually developed finite-state grammars for 25
languages (CU7565-01-0). They addition-
ally developed a non-neural learner for all lan-
guages (CU7565-02-0) that uses hierarchi-
cal paradigm clustering (based on similarity of
string transformation rules between inflectional
slots).  Another team, Flexica, proposed a
model (flexica-01-0) conceptually similar
to Hulden et al. (2014), although they did not at-
tempt to reconstruct the paradigm itself and treated
transformation rules independently assigning each
of them a score based on its frequency and speci-
ficity as well as diversity of the characters sur-
rounding the pattern.’

This year, we instituted a slightly different evalua-
tion regimen than in previous years, which takes
into account the statistical significance of differ-
ences between systems and allows for an informed
comparison across languages and families better
than a simple macro-average.

The process works as follows:

1. For each language, we rank the systems ac-
cording to their accuracy (or Levenshtein dis-
tance). To do so, we use paired bootstrap
resampling (Koehn, 2004)® to only take sta-
tistically significant differences into account.
That way, any system which is the same (as
assessed via statistical significance) as the
best performing one is also ranked 1% for that
language.

2. For the set of languages where we want collec-
tive results (e.g. languages within a linguistic

"English plural noun formation rule “* — *s” has high di- genus), we aggregate the systems’ ranks and
versity whereas past tense rule such as “*a* — *00*” as in —
(understand, understood) has low diversity. $We use 10,000 samples with 50% ratio, and p < 0.005.
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Individual Language Rankings Final Ranking
cly ctp czn Zpv avg  #1 #3 #4 #6
uiuc (1) CULing (1) deepspin (1) NYU-CUB (1) uiuc 1 4
trm-single (1) uiuc (1) uiuc (1) CULing (1) | trm-single 1 4
CULing (3) | trm-single (1) IMS (1) deepspin (1) CULing 1.5 31
deepspin (3) IMS (4) NYU-CUB (1) uiuc (1) deepspin 2.25 211
NYU-CUB (3) deepspin (4) CULing (1) | trm-single (1) NYU-CUB 2.25 211
IMS (6) NYU-CUB (4) | trm-single (1) IMS (1) IMS 3 2011

Table 4: Illustration of our ranking method, over the four Zapotecan languages. Note: The final ranking is based
on the actual counts (#1,#2, etc), not on the system’s average rank.

re-rank them based on the amount of times
they ranked 1%, 27, 31 _etc.

Table 4 illustrates an example of this process us-
ing four Zapotecan languages and six systems.

8 Results

This year we had four winning systems
(i.e., ones that outperform the best base-
line): CULing-01-0, deepspin-02-1,
uiuc-01-0, and deepspin-01-1, all
neural. As Tab. 5 shows, they achieve over
90% accuracy. Although CULing-01-0 and
uiuc-01-0 are both monolingual transformers
that do not use any hallucinated data, they follow
different strategies to improve performance. The
strategy proposed by CULing-01-0 of enrich-
ing the input data with extra entries that included
non-lemma forms and their tags as a source form,
enabled their system to be among top performers
on all language families; uiuc-01-0, on the
other hand, did not modify the data but rather
changed the decoder to be bidirectional and
made family-wise fine-tuning of each (mono-
lingual) model. The system is also among the
top performers on all language families except
Iranian. The third team, DeepSpin, trained and
fine-tuned their models on all language data. Both
models are ranked high (although the sparsemax
model, deepspin-02-1, performs better
overall) on most language groups with exception
of Algic. Sparsemax was also found useful by
CMU-Tartan. The neural ensemble model with
data augmentation from IMS team shows superior
performance on languages with smaller data sizes
(under 10,000 samples). LTI and Flexica teams
also observed positive effects of multilingual
training and data hallucination on low-resource
languages. The latter was also found useful in the
ablation study made by NYU-CUBoulder team.
Several teams aimed to address particular research
questions; we will further summarize their results.

System ‘ Rank ‘ Acc
uiuc-01-0 24 | 90.5
deepspin-02-1 29 1909
BASE: trm-single 2.8 | 90.1
CULing-01-0 32 | 91.2
deepspin-01-1 3.8 | 90.5
BASE: trm-aug-single 3.7 | 903
NYU-CUBoulder-04-0 7.1 | 88.8
NYU-CUBoulder-03-0 89 | 88.8
NYU-CUBoulder-02-0 8.9 | 88.7
IMS-00-0 10.6 | 89.2
NYU-CUBoulder-01-0 9.6 | 88.6
BASE: trm-shared 10.3 | 85.9
BASE: mono-aug-single | 7.5 | 88.8
cmu_tartan_00-0 8.7 | 87.1
BASE: mono-single 7.9 | 85.8
cmu_tartan 01-1 9.0 | 87.1
BASE: trm-aug-shared 12.5 | 86.5
BASE: mono-shared 10.8 | 86.0
cmu_tartan 00-1 94 | 86.5
LTI-00-1 12.0 | 86.6
BASE: mono-aug-shared | 12.8 | 86.8
cmu_tartan_02-1 10.6 | 86.1
cmu_tartan 01-0 109 | 86.6
flexica-03-1 16.7 | 79.6
ETHZ-00-1 20.1 | 75.6
*CU7565-01-0 24.1 | 90.7
flexica-02-1 17.1 | 78.5
*CU7565-02-0 19.2 | 83.6
ETHZ-02-1 17.0 | 80.9
flexica-01-0 24.4 | 70.8
Oracle (Baselines) 96.1
Oracle (Submissions) 97.7
Oracle (All) 97.9

Table 5: Aggregate results on all languages. Bolded
results are the ones which beat the best baseline. * and
italics denote systems that did not submit outputs in all
languages (their accuracy is a partial average).
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Figure 2: Accuracy by language averaged across all the final submitted systems with their standard deviations.
Language families are demarcated by color, with accuracy on development languages (top), and generalization

languages (bottom).

Is developing morphological grammars manu-
ally worthwhile? This was the main question
asked by CU7565 who manually designed finite-
state grammars for 25 languages. Paradigms of
some languages were relatively easy to describe
but neural networks also performed quite well on
them even with a limited amount of data. For low-
resource languages such as Ingrian and Tagalog the
grammars demonstrate superior performance but
this comes at the expense of a significant amount
of person-hours.

What is the best training strategy for low-
resource languages? Teams that generated
hallucinated data highlighted its utility for low-
resource languages. Augmenting the data with
tuples where lemmas are replaced with non-
lemma forms and their tags is another technique
that was found useful. In addition, multilingual
training and ensembles yield extra gain in terms
of accuracy.

Are the systems complementary? To address
this question, we evaluate oracle scores for
baseline systems, submitted systems, and all of
them together. Typically, as Tables 8-21 in the
Appendix demonstrate, the baselines and the
submissions are complementary - adding them
together increases the oracle score. Furthermore,
while the full systems tend to dominate the partial
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systems (that were designed for a subset of
languages, such as CU7565-01-0), there are a
number of cases where the partial systems find the
solution when the full systems don’t - and these
languages often then get even bigger gains when
combined with the baselines. This even happens
when the accuracy of the baseline is very high -
Finnish has baseline oracle of 99.89; full systems
oracle of 99.91; submission oracle of 99.94 and
complete oracle of 99.96, so an ensemble might
be able to improve on the results. The largest
gaps in oracle systems are observed in Algic,
Oto-Manguean, Sino-Tibetan, Southern Daly,
Tungusic, and Uto-Aztecan families.’

Has morphological inflection become a solved
problem in certain scenarios? The results
shown in Fig. 2 suggest that for some of the de-
velopment language families, such as Austrone-
sian and Niger-Congo, the task was relatively
easy, with most systems achieving high accuracy,
whereas the task was more difficult for Uralic and
Oto-Manguean languages, which showed greater
variability in level of performance across sub-
mitted systems. Languages such as Ludic (lud),
Norwegian Nynorsk (nno), Middle Low German

9Please see the results per language here:
https://docs.google.com/spreadsheets/
d/10DFRnNHUwN-mvGtzXA1lsNdCi-jNgZjiE-
1i97RxZCK0kg/edit?usp=sharing
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(gml), Evenki (evn), and O’odham (ood) seem to  fall into each category and illustrate that most lan-
be the most challenging languages based on simple  guage samples are correctly predicted by major-
accuracy. For a more fine-grained study, we have ity of the systems. For noun declension, Old En-
classified test examples into four categories: “very  glish (ang), Middle Low German (gml), Evenki
easy”, “easy”, “hard”, and “very hard”. “Very (evn), O’odham (ood), V&ro (vro) are the most dif-
easy” examples are ones that all submitted systems  ficult (some of this difficulty comes from language
got correct, while “very hard” examples are ones  data inconsistency, as described in the following
that no submitted system got correct. “Easy” ex-  section). For adjective declension, Classic Syriac
amples were predicted correctly for 80% of sys-  presents the highest difficulty (likely due to its lim-
tems, and “hard” were only correct in 20% of sys-  ited data).

tems. Fig. 3, Fig. 4, and Fig. 5 represent per-

centage of noun, verb, and adjective samples that
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9 Error Analysis

In our error analysis we follow the error type tax-
onomy proposed in Gorman et al. (2019). First, we
evaluate systematic errors due to inconsistencies in
the data, followed by an analysis of whether having
seen the language or its family improved accuracy.
We then proceed with an overview of accuracy for
each of the language families. For a select number
of families, we provide a more detailed analysis of
the error patterns.

Tab. 6 and Tab. 7 provide the number of samples
in the training, development, and test sets, percent-
age of inconsistent entries (the same lemma—tag
pair has multiple infected forms) in them, percent-
age of contradicting entries (same lemma-—tag pair
occurring in train and development or test sets but
assigned to different inflected forms), and percent-
age of entries in the development or test sets con-
taining a lemma observed in the training set. The
train, development and test sets contain 2%, 0.3%,
and 0.6% inconsistent entries, respectively. Azer-
baijani (aze), Old English (ang), Cree (cre), Danish
(dan), Middle Low German (gml), Kannada (kan),
Norwegian Bokmal (nob), Chichimec (pei), and
Veps (vep) had the highest rates of inconsistency.
These languages also exhibit the highest percent-
age of contradicting entries. The inconsistencies
in some Finno-Ugric languages (such as Veps and
Ludic) are due to dialectal variations.

The overall accuracy of system and language
pairings appeared to improve with an increase in
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the size of the dataset (Fig. 6; see also Fig. 7
for accuracy trends by language family and Fig. 8
for accuracy trends by system). Overall, the vari-
ance was considerable regardless of whether the
language family or even the language itself had
been observed during the Development Phase. A
linear mixed-effects regression was used to assess
variation in accuracy using fixed effects of lan-
guage category, the size of the training dataset (log
count), and their interactions, as well as random
intercepts for system and language family accu-
racy.'® Language category was sum-coded with
three levels: development language—development
family, surprise language—development family, or
surprise language—surprise family.

A significant effect of dataset size was observed,
such that a one unit increase in log count corre-
sponded to a 2% increase in accuracy (5 = 0.019,
p < 0.001). Language category type also signifi-
cantly influenced accuracy: both development lan-
guages and surprise languages from development
families were less accurate on average (Bgey—dev =
-0.145, Bsyr—dey =-0.167, each p < 0.001). These
main effects were, however, significantly modu-
lated by interactions with dataset size: on top of
the main effect of dataset size, accuracy for devel-
opment languages increased an additional ~ 1.7%
(Bdev—devxsize = 0.017, p < 0.001) and accuracy
for surprise languages from development families

10 Accuracy should ideally be assessed at the trial level using
a logistic regression as opposed to a linear regression. By-
trial accuracy was however not available at analysis time.



increased an additional ~ 2.9% (Bsur—devxsize =
0.029, p < 0.001).

Afro-Asiatic: This family was represented by
three languages. Mean accuracy across systems
was above average at 91.7%. Relative to other fam-
ilies, variance in accuracy was low, but neverthe-
less ranged from 41.1% to 99.0%.

Algic: This family was represented by one lan-
guage, Cree. Mean accuracy across systems was
below average at 65.1%. Relative to other fami-
lies, variance in accuracy was low, ranging from
41.5% to 73%. All systems appeared to struggle
with the choice of preverbal auxiliary. Some aux-
iliaries were overloaded: ‘kitta’ could refer to fu-
ture, imperfective, or imperative. The morpho-
logical features for mood and tense were also fre-
quently combined, such as SBJV+OPT (subjunc-
tive plus optative mood). While the paradigms
were very large, there were very few lemmas (28
impersonal verbs and 14 transitive verbs), which
may have contributed to the lower accuracy. Inter-
estingly, the inflections could largely be generated
by rules.!!

Austronesian: This family was represented by
five languages. Mean accuracy across systems was
around average at 80.5%. Relative to other fami-
lies, variance in accuracy was high, with accuracy
ranging from 39.5% to 100%. One may notice a
discrepancy among the difficulty in processing dif-
ferent Austronesian languages. For instance, we
see a difference of over 10% in the baseline perfor-
mance of Cebuano (84%) and Hiligaynon (96%).'?
This could come from the fact that Cebuano only
has partial reduplication while Hiligaynon has full
reduplication. Furthermore, the prefix choice for
Cebuano is more irregular, making it more diffi-
cult to predict the correct conjugation of the verb.

Dravidian: This family was represented by two
languages: Kannada and Telugu. Mean accu-
racy across systems was around average at 82.2%.
Relative to other families, variance in accuracy
was high: system accuracy ranged from 44.6% to

"Minor issues with the encoding of diacritics were identified,
and will be corrected for release.

12We also note that some Hiligaynon entries contained multi-
ple lemma forms (“bati/batian/pamatian”) for a single entry.
We decided to leave it since we could not find any more
information on which of the lemmas should be selected as
the main. A similar issue was observed in Chichicapan Za-
potec.
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96.0%. Accuracy for Telugu was systematically
higher than accuracy for Kannada.

Indo-European: This family was represented
by 29 languages and four main branches. Mean ac-
curacy across systems was slightly above average
at 86.9%. Relative to other families, variance in
accuracy was very high: system accuracy ranged
from 0.02% to 100%. For Indo-Aryan, mean ac-
curacy was high (96.0%) with low variance; for
Germanic, mean accuracy was slightly below aver-
age (79.0%) but with very high variance (ranging
from 0.02% to 99.5%), for Romance, mean accu-
racy was high (93.4%) but also had a high variance
(ranging from 23.5% to 99.8%), and for Iranian,
mean accuracy was high (89.2%), but again with
a high variance (ranging from 25.0% to 100%).
Languages from the Germanic branch of the Indo-
European family were included in the Develop-
ment Phase.

Niger—Congo: This family was represented by
ten languages. Mean accuracy across systems was
very good at 96.4%. Relative to other families,
variance in accuracy was low, with accuracy rang-
ing from 62.8% to 100%. Most languages in this
family are considered low resource, and the re-
sources used for data gathering may have been bi-
ased towards the languages’ regular forms, as such
this high accuracy may not be representative of the
“easiness” of the task in this family. Languages
from the Niger—Congo family was included in the
Development Phase.

Oto-Manguean: This family was represented
by nine languages. Mean accuracy across systems
was slightly below average at 78.5%. Relative
to other families, variance in accuracy was high,
with accuracy ranging from 18.7% to 99.1%. Lan-
guages from the Oto-Manguean family were in-
cluded in the Development Phase.

Sino-Tibetan: This family was represented by
one language, Bodic. Mean accuracy across sys-
tems was average at 82.1%, and variance across
systems was also very low. Accuracy ranged from
67.9% to 85.1%. The results are similar to those
in Di et al. (2019) where majority of errors relate
to allomorphy and impossible combinations of Ti-
betan unit components.

Siouan: This family was represented by one lan-
guage, Dakota. Mean accuracy across systems was
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above average at 89.4%, and variance across sys-
tems was also low, despite the range from 0% to
95.7%. Dakota presented variable prefixing and in-
fixing of person morphemes, along some complex-
ities related to fortition processes. Determining the
factor(s) that governed variation in affix position
was difficult from a linguist’s perspective, though
many systems were largely successful. Success
varied in the choice of the first or second person
singular allomorphs which had increasing degrees
of consonant strengthening (e.g., /wa/, /ma/, /mi/
/bde/, /bdu/ for the first person singular and /ya/,
/na/, /ni/, /de/, or /du/ for the second person singu-
lar). In some cases, these fortition processes were
overapplied, and in some cases, entirely missed.

Songhay: This family was represented by one
language, Zarma. Mean accuracy across systems
was above average at 88.6%, and variance across
systems was relatively high. Accuracy ranged
from 0% to 100%.

Southern Daly: This family was represented by
one language, Murrinh-Patha. Mean accuracy
across systems was below average at 73.2%, and
variance across systems was relatively high. Ac-
curacy ranged from 21.2% to 91.9%.

Tungusic: This family was represented by one
language, Evenki. The overall accuracy was the
lowest across families. Mean accuracy was 53.8%
with very low variance across systems. Accuracy
ranged from 43.5% to 59.0%. The low accuracy
is due to several factors. Firstly and primarily,
the dataset was created from oral speech samples
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in various dialects of the language. The Evenki
language is known to have rich dialectal variation.
Moreover, there was little attempt at any standard-
ization in the oral speech transcription. These pe-
culiarities led to a high number of errors. For in-
stance, some of the systems synthesized a wrong
plural form for a noun ending in /-n/. Depending
on the dialect, it can be /-r/ or /-1/, and there is a
trend to have /-hV1/ for borrowed nouns. Deduc-
ing such a rule as well as the fact that the noun is
a loanword is a hard task. Other suffixes may also
have variable forms (such as /-kVlIlu/ vs /-kVIdu/
depending on the dialect for the 2PL imperative.
Some verbs have irregular past tense forms depend-
ing on the dialect and the meaning of the verb (e.
g. /0:-/ ’to make’ and ’to become’). Next, vari-
ous dialects exhibit various vowel and consonant
changes in suffixes. For example, some dialects
(but not all of them) change /w/ to /b/ after /1/, and
the systems sometimes synthesized a wrong form.
The vowel harmony is complex: not all suffixes
obey it, and it is also dialect-dependent. Some
suffixes have variants (e. g., /-sin/ and /-s/ for
SEMEL (semelfactive)), and the choice between
them might be hard to understand. Finally, some of
the mistakes are due to the markup scheme scarcity.
For example, various past tense forms are all anno-
tated as PST, or there are several comitative suf-
fixes all annotated as COM. Moreover, some fea-
tures are present in the word form but they receive
no annotation at all. It is worth mentioning that
some of the predictions could theoretically be pos-
sible. To sum up, the Evenki case presents the chal-



lenges of oral non-standardized speech.

Turkic: This family was represented by nine lan-
guages. Mean accuracy across systems was rel-
atively high at 93%, and relative to other fami-
lies, variance across systems was low. Accuracy
ranged from 51.5% to 100%. Accuracy was lower
for Azerbaijani and Turkmen, which after closer
inspection revealed some slight contamination in
the ‘gold’ files. There was very marginal varia-
tion in the accuracy for these languages across sys-
tems. Besides these two, accuracies were predom-
inantly above 98%. A few systems struggled with
the choice and inflection of the postverbal auxil-
iary in various languages (e.g., Kyrgyz, Kazakh,
and Uzbek).

Uralic: This family was represented by 16 lan-
guages. Mean accuracy across systems was aver-
age at 81.5%, but the variance across systems and
languages was very high. Accuracy ranged from
0% to 99.8%. Languages from the Uralic family
were included in the Development Phase.

Uto-Aztecan: This family was represented by
one language, O’odham. Mean accuracy across
systems was slightly below average at 76.4%, but
the variance across systems and languages was
fairly low. Accuracy ranged from 54.8% to 82.5%.
The systems with higher accuracy may have bene-
fited from better recall of suppletive forms relative
to lower accuracy systems.

10 Conclusion

This years’s shared task on morphological rein-
flection focused on building models that could
generalize across an extremely typologically di-
verse set of languages, many from understudied
language families and with limited available text
resources. As in previous years, neural models
performed well, even in relatively low-resource
cases. Submissions were able to make produc-
tive use of multilingual training to take advantage
of commonalities across languages in the dataset.
Data augmentation techniques such as hallucina-
tion helped fill in the gaps and allowed networks
to generalize to unseen inputs. These techniques,
combined with architecture tweaks like sparse-
max, resulted in excellent overall performance on
many languages (over 90% accuracy on average).
However, the task’s focus on typological diver-
sity revealed that some morphology types and lan-
guage families (Tungusic, Oto-Manguean, South-
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ern Daly) remain a challenge for even the best sys-
tems. These families are extremely low-resource,
represented in this dataset by few or a single lan-
guage. This makes cross-linguistic transfer of simi-
larities by multilanguage training less viable. They
may also have morphological properties and rules
(e.g., Evenki is agglutinating with many possible
forms for each lemma) that are particularly diffi-
cult for machine learners to induce automatically
from sparse data. For some languages (Ingrian,
Tajik, Tagalog, Zarma, and Lingala), optimal per-
formance was only achieved in this shared task by
hand-encoding linguist knowledge in finite state
grammars. Itis up to future research to imbue mod-
els with the right kinds of linguistic inductive bi-
ases to overcome these challenges.
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A Language data statistics

Lang Total Inconsistency (%)  Contradiction (%) In Vocabulary (%)

| Train | Dev | Test | Train | Dev | Test | Dev |  Test | Dev | Test
aka 2793 380 763 0.0 00| 0.0 0.0 0.0 24.7 12.5
ang | 29270 4122 8197 11.8 1.8 34 21.6 21.9 35.1 21.3
ast 5096 728 1457 0.0 0.0 | 0.0 0.0 0.0 23.9 12.4
aze 5602 801 1601 11.9 1.9 | 4.0 22.3 20.9 31.5 20.2
azg 8482 1188 2396 0.8 0.0 | 0.0 1.3 1.1 26.9 13.8
bak 8517 1217 2434 0.0 0.0 | 0.0 0.0 0.0 59.8 40.1
ben 2816 402 805 0.0 0.0 | 0.0 0.0 0.0 29.9 16.0
bod 3428 466 936 1.0 0.2 0.3 2.4 1.9 80.0 73.4
cat 51944 7421 | 14842 0.0 0.0 | 0.0 0.0 0.0 20.8 10.4
ceb 420 58 111 1.0 0.0 | 0.0 0.0 2.7 72.4 62.2
cly 3301 471 944 0.0 0.0 | 0.0 0.0 0.0 37.4 19.3
cpa 5298 727 1431 3.4 0.6 | 0.8 6.6 43 60.2 39.8
cre 4571 584 1174 18.5 2.1 4.9 29.8 29.6 5.5 2.7
crh 5215 745 1490 0.0 0.0 | 0.0 0.0 0.0 77.4 60.7
ctp 2397 313 598 15.9 1.6 | 3.0 22.0 21.7 52.7 34.1
czn 1088 154 305 0.2 0.0 | 0.0 1.3 0.0 86.4 74.8
dak 2636 376 750 0.0 0.0 | 0.0 0.0 0.0 75.5 55.7
dan 17852 2550 5101 16.5 2.5 5.0 34.5 329 71.4 51.8
deu | 99405 | 14201 | 28402 0.0 0.0 | 0.0 0.0 0.0 55.8 37.8
dje 56 9 16 0.0 00| 0.0 0.0 0.0 100.0 87.5
eng | 80865 | 11553 | 23105 1.1 0.2 0.4 2.1 1.9 80.3 66.2
est 26728 3820 7637 2.7 04 | 0.8 6.1 5.1 22.4 11.6
evn 5413 774 1547 9.6 28 | 43 8.9 10.0 38.9 325
fas 25225 3603 7208 0.0 00| 0.0 0.0 0.0 7.6 3.8
fin 99403 | 14201 | 28401 0.0 0.0 | 0.0 0.0 0.0 32.6 17.2
frm | 24612 3516 7033 0.0 0.0 | 0.0 0.0 0.0 17.1 8.6
fir 1902 224 477 4.0 0.0 1.7 9.8 6.1 22.8 10.7
fur 5408 772 1546 0.0 0.0 | 0.0 0.0 0.0 21.6 10.9
gaa 607 79 169 0.0 00| 0.0 0.0 0.0 74.7 473
glg 24087 3441 6882 0.0 0.0 | 0.0 0.0 0.0 14.1 7.1
gmh 496 71 141 1.2 0.0 | 0.0 5.6 2.8 38.0 20.6
gml 890 127 255 17.3 3.1 5.5 22.8 27.8 394 20.4
gsw 1345 192 385 0.0 0.0 | 0.0 0.0 0.0 55.7 35.6
hil 859 116 238 0.0 00| 0.0 0.0 0.0 59.5 36.6
hin 36300 5186 | 10372 0.0 0.0 | 0.0 0.0 0.0 5.0 2.5
isl 53841 7690 | 15384 1.0 0.1 0.3 1.9 2.0 48.8 29.5
izh 763 112 224 0.0 0.0 | 0.0 0.0 0.0 42.9 223
kan 3670 524 1049 132 | 27| 4.7 18.7 20.7 21.9 14.0
kaz 7852 1063 2113 1.1 0.2 0.4 1.9 1.8 10.6 53
kir 3855 547 1089 0.0 0.0 | 0.0 0.0 0.0 17.9 9.0
kjh 840 120 240 0.0 0.0 | 0.0 0.0 0.0 50.8 30.4
kon 568 76 156 0.0 0.0 | 0.0 0.0 0.0 78.9 71.8
kpv | 57919 8263 | 16526 0.0 00| 0.0 0.0 0.0 48.8 35.0
krl 80216 | 11225 | 22290 0.2 0.0 | 0.0 0.3 0.3 19.7 10.3
lin 159 23 46 0.0 0.0 | 0.0 0.0 0.0 100.0 73.9
liv 2787 398 802 0.0 0.0 | 0.0 0.0 0.0 40.7 241

Table 6: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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an ota nconsistenc 0 ontradiction (% n vocapular (]
Lang Total I istency (%)  Contradiction (%) In Vocabulary (%

\ Train | Dev | Test | Train | Dev | Test | Dev |  Test | Dev |  Test

11d 5073 725 1450 0.0 0.0 0.0 0.0 0.0 24.3 12.3
lud 294 41 82 7.8 0.0 3.7 9.8 11.0 31.7 20.7
lug 3420 489 977 4.0 0.6 0.8 5.1 7.6 18.2 9.1
mao 145 21 42 0.0 0.0 0.0 0.0 0.0 61.9 81.0
mdf 46362 6633 13255 1.6 0.2 0.5 3.1 33 49.0 35.1
mhr 71143 10081 20233 0.3 0.0 0.0 04 0.5 48.8 343
mlg 447 62 127 0.0 0.0 0.0 0.0 0.0 90.3 74.0
mlit 1233 176 353 0.1 0.0 0.0 0.6 0.0 52.3 30.6
mwf 777 111 222 2.6 0.0 0.9 2.7 4.5 25.2 13.1
myv 74928 10738 21498 1.7 0.3 0.5 3.1 3.1 45.5 32.7
nld 38826 5547 11094 0.0 0.0 0.0 0.0 0.0 58.2 384
nno 10101 1443 2887 3.4 04 1.0 6.0 6.8 80.0 70.2
nob 13263 1929 3830 10.5 1.8 3.1 18.5 19.7 80.5 70.5
nya 3031 429 853 0.0 0.0 0.0 0.0 0.0 46.4 26.5
olo 43936 6260 12515 1.4 0.3 0.5 33 2.9 83.0 70.8
ood 1123 160 314 04 0.0 0.0 1.9 1.0 70.0 58.0
orm 1424 203 405 0.2 0.0 0.2 0.5 0.7 41.9 22.7
ote 22962 3231 6437 0.4 0.1 0.1 0.5 0.8 48.4 29.5
otm 21533 3020 5997 0.9 0.1 0.3 1.8 1.7 494 29.4
pei 10017 1349 2636 15.8 2.6 4.9 21.5 214 9.1 4.7
pus 4861 695 1389 39 0.6 1.6 9.9 7.7 34.2 23.0
san 22968 3188 6272 3.1 0.5 0.9 4.5 5.5 26.9 14.6
sme 43877 6273 12527 0.0 0.0 0.0 0.0 0.0 28.2 16.3
sna 1897 246 456 0.0 0.0 0.0 0.0 0.0 31.3 18.0
sot 345 50 99 0.0 0.0 0.0 0.0 0.0 48.0 25.3
swa 3374 469 910 0.0 0.0 0.0 0.0 0.0 20.7 10.5
swe 54888 7840 15683 0.0 0.0 0.0 0.0 0.0 70.6 51.9
syc 1917 275 548 3.5 1.5 0.4 7.6 8.6 47.3 28.1
tel 952 136 273 1.4 0.0 1.1 0.7 2.6 62.5 39.6
tgk 53 8 16 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tgl 1870 236 478 7.6 1.3 1.0 11.9 10.0 74.2 55.6
tuk 20963 2992 5979 9.5 1.5 3.2 16.8 16.0 16.7 8.3
udm 88774 12665 25333 0.0 0.0 0.0 0.0 0.0 38.1 24.8
uig 5372 750 1476 0.3 0.0 0.0 0.3 0.5 12.0 6.1
urd 8486 1213 2425 0.0 0.0 0.0 0.0 0.0 94 6.0
uzb 25199 3596 7191 0.0 0.0 0.0 0.0 0.0 11.9 6.0
vec 12203 1743 3487 0.0 0.0 0.0 0.0 0.0 20.8 10.6
vep 94395 13320 26422 10.9 1.8 3.3 19.3 19.8 25.1 12.9
vot 1003 146 281 0.0 0.0 0.0 0.0 0.0 35.6 19.6
VIo 357 51 103 1.1 0.0 0.0 2.0 1.0 70.6 50.5
Xno 178 26 51 0.0 0.0 0.0 0.0 0.0 19.2 9.8
xty 2110 299 600 0.1 0.3 0.0 0.3 1.3 78.6 65.8
zZpv 805 113 228 0.0 0.0 04 2.7 0.9 78.8 78.9
zul 322 42 78 1.9 0.0 0.0 24 0.0 83.3 66.7
TOTAL | 1574004 | 223649 | 446580 | 2.0 | 03 | 06 | 36 | 36| 41| 279

Table 7: Number of samples in training, development, test sets, as well as statistics on systematic errors (inconsis-
tency) and percentage of samples with lemmata observed in the training set.
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B Accuracy trends
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Figure 7: Accuracy for each system and language by the log size of the dataset, grouped by language family.
Points are color-coded according to language family, and shape-coded according to language type: development
language — development family, surprise language — development family, surprise language — surprise family.
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Figure 8: Accuracy for each language by the log size of the dataset, grouped by submitted system. Points are
color- and shape-coded according to language type: development language — development family, surprise language
— development family, surprise language — surprise family.
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Table 8: Results per Language Family: Afro-Asiatic and Algic

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 96.4
CULing-01-0 1.0 | 963
deepspin-02-1 3.7 | 952
BASE: trm-single 4.0 |955
BASE: trm-aug-single 4.0 |95.0
deepspin-01-1 4.0 | 94.7
NYU-CUBoulder-01-0 4.0 | 944
NYU-CUBoulder-02-0 40 | 944
NYU-CUBoulder-04-0 9.7 | 943
BASE: mono-single 6.3 | 928
cmu_tartan_00-0 6.3 | 92.7
cmu_tartan 01-0 9.3 | 89.6
cmu_tartan 01-1 93 | 894
cmu_tartan 02-1 10.0 | 80.9
ETHZ-00-1 6.7 | 94.7
BASE: trm-shared 6.7 | 94.2
BASE: trm-aug-shared 6.7 | 94.0
IMS-00-0 6.7 | 93.6
BASE: mono-aug-single | 6.7 | 93.5
NYU-CUBoulder-03-0 | 12.3 | 93.7
flexica-02-1 93 | 929
ETHZ-02-1 93 ]923
flexica-03-1 93 | 92.1
BASE: mono-shared 93 | 915
*CU7565-01-0 19.3 | 93.7
BASE: mono-aug-shared | 16.0 | 89.8
CU7565-02-0 15.0 | 91.6
cmu_tartan 00-1 17.7 | 91.7
LTI-00-1 17.7 | 91.3
flexica-01-1 283 | 734
Oracle (Baselines) 98.7
Oracle (Submissions) 99.7
Oracle (All) 99.8

(a) Results on the Afro-Asiatic family (3 languages)

System ‘ Rank ‘ Acc
CULing-01-0 1.0 | 73.0
flexica-03-1 1.0 | 70.4
IMS-00-0 1.0 | 70.3
uiuc-01-0 1.0 | 70.3
ETHZ-02-1 1.0 | 69.4
cmu_tartan 02-1 1.0 | 69.4
flexica-02-1 1.0 | 69.4
cmu_tartan 00-1 8.0 | 69.2
BASE: mono-aug-shared | 8.0 | 68.5
BASE: mono-aug-single | 8.0 | 68.5
ETHZ-00-1 8.0 | 684
BASE: trm-aug-shared 8.0 | 68.0
BASE: trm-aug-single 8.0 | 68.0
cmu_tartan 01-1 8.0 | 68.0
NYU-CUBoulder-01-0 8.0 | 679
BASE: trm-shared 8.0 | 67.7
BASE: trm-single 8.0 | 67.7
cmu_tartan 00-0 8.0 | 67.6
cmu_tartan 01-0 8.0 | 67.6
BASE: mono-shared 8.0 | 66.8
BASE: mono-single 8.0 | 66.8
NYU-CUBoulder-02-0 8.0 | 66.5
deepspin-02-1 8.0 | 66.5
deepspin-01-1 24.0 | 65.1
NYU-CUBoulder-03-0 | 24.0 | 64.7
NYU-CUBoulder-04-0 | 26.0 | 61.8
CU7565-02-0 27.0 | 555
LTI-00-1 28.0 | 44.9
flexica-01-1 28.0 | 41.5
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 86.9
Oracle (Submissions) 98.7
Oracle (All) 98.8

(b) Results on the Algic family (1 language)

26



Table 9: Results per Language Family: Austronesian and Dravidian

System ‘ Rank ‘ Acc
CULing-01-0 1.0 | 84.4
IMS-00-0 1.6 | 85.1
NYU-CUBoulder-03-0 1.6 | 83.6
ETHZ-00-1 1.6 | 834
NYU-CUBoulder-01-0 1.6 | 82.9
NYU-CUBoulder-04-0 1.6 | 82.9
BASE: trm-shared 1.6 | 82.8
NYU-CUBoulder-02-0 1.6 | 82.7
deepspin-02-1 32 | 824
BASE: trm-aug-single 32 | 81.6
*CU7565-01-0 6.8 | 82.7
uiuc-01-0 54 | 823
BASE: trm-single 6.0 | 81.2
BASE: mono-aug-shared | 6.0 | 82.9
LTI-00-1 6.0 | 82.0
BASE: mono-aug-single | 7.8 | 81.3
deepspin-01-1 7.6 | 81.0
BASE: trm-aug-shared 7.6 | 79.8
flexica-03-1 7.6 | 79.3
cmu_tartan_00-0 82 | 79.1
BASE: mono-shared 10.4 | 79.2
BASE: mono-single 104 | 77.6
cmu_tartan_00-1 12.8 | 80.3
cmu_tartan 02-1 12.8 | 78.9
cmu_tartan_01-0 12.8 | 78.6
flexica-02-1 12.8 | 78.3
cmu_tartan 01-1 12.8 | 78.2
ETHZ-02-1 12.0 | 77.4
*CU7565-02-0 224 | 73.7
flexica-01-1 21.2 | 69.7
Oracle (Baselines) 89.1
Oracle (Submissions) 93.5
Oracle (All) 93.7

(a) Results on the Austronesian family (5 languages)

System ‘ Rank ‘ Acc
IMS-00-0 1.0 | 87.6
CULing-01-0 1.0 | 87.0
BASE: trm-aug-shared 1.0 | 86.8
cmu_tartan_00-0 1.0 | 86.3
cmu_tartan_01-1 1.0 | 86.3
BASE: trm-aug-single 1.0 | 85.9
BASE: trm-shared 1.0 | 85.8
ETHZ-02-1 1.0 | 855
cmu_tartan 01-0 5.0 | 85.7
deepspin-02-1 5.0 | 85.6
cmu_tartan 02-1 50 | 855
BASE: trm-single 50 | 84
uiuc-01-0 50 | 853
deepspin-01-1 5.0 | 852
LTI-00-1 5.0 | 85.0
ETHZ-00-1 50 | 84.9
BASE: mono-single 5.0 | 84.8
BASE: mono-aug-single | 5.0 | 84.1
NYU-CUBoulder-02-0 | 12.0 | 82.2
NYU-CUBoulder-01-0 | 12.0 | 82.2
NYU-CUBoulder-03-0 | 12.0 | 82.1
NYU-CUBoulder-04-0 | 12.0 | 81.9
CU7565-02-0 145 | 814
flexica-02-1 16.5 | 83.7
BASE: mono-shared 16.5 | 83.7
flexica-03-1 16.5 | 83.0
cmu_tartan_00-1 19.0 | 62.6
BASE: mono-aug-shared | 23.5 | 79.7
flexica-01-1 28.5 | 56.9
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 95.9
Oracle (Submissions) 98.2
Oracle (All) 98.6

(b) Results on the Dravidian family (2 languages)
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Table 10: Results per Language Family: Indo-European and Niger-Congo

System ‘ Rank ‘ Acc System ‘ Rank ‘ Acc
deepspin-02-1 23 1929 IMS-00-0 1.0 | 98.1
uiuc-01-0 3.1 | 91.6 uiuc-01-0 1.0 | 979
deepspin-01-1 2.9 | 929 NYU-CUBoulder-01-0 1.3 | 98.1
BASE: trm-single 29 | 91.7 NYU-CUBoulder-02-0 1.3 | 98.1
CULing-01-0 39 |935 deepspin-02-1 1.3 | 98.0
BASE: trm-aug-single 34 | 929 NYU-CUBoulder-03-0 1.3 | 98.0
NYU-CUBoulder-04-0 7.3 | 90.7 BASE: mono-aug-single | 1.3 | 97.9
BASE: trm-shared 12.0 | 86.9 deepspin-01-1 1.3 | 97.9
cmu_tartan_00-1 8.1 | 88.6 NYU-CUBoulder-04-0 1.3 | 97.8
BASE: mono-shared 89 1903 LTI-00-1 1.3 | 97.7
NYU-CUBoulder-03-0 10.0 | 91.2 BASE: trm-shared 1.3 | 97.7
cmu_tartan_00-0 8.9 | 88.5 BASE: trm-single 1.3 | 97.7
NYU-CUBoulder-02-0 11.4 | 90.6 BASE: mono-single 1.3 | 97.7
BASE: mono-aug-shared | 12.9 | 90.5 BASE: mono-shared 1.3 | 97.6
NYU-CUBoulder-01-0 12.4 | 90.4 BASE: trm-aug-single 1.3 | 975
BASE: mono-single 8.1 | 88.0 BASE: trm-aug-shared 1.3 | 974
BASE: mono-aug-single | 7.9 | 91.9 BASE: mono-aug-shared | 1.3 | 97.2
cmu_tartan_01-0 10.5 | 88.6 *CU7565-01-0 39 | 98.0
cmu_tartan 01-1 9.9 | 885 CULing-01-0 34 | 97.1
IMS-00-0 15.9 | 90.4 flexica-03-1 3.1 | 969
cmu_tartan 02-1 10.7 | 88.4 flexica-02-1 3.1 | 96.9
BASE: trm-aug-shared 15.0 | 88.6 cmu_tartan 01-1 3.6 | 96.4
LTI-00-1 15.8 | 87.5 cmu_tartan_00-0 3.6 | 96.3
CU7565-02-0 20.3 | 86.3 cmu_tartan 01-0 3.6 | 963
flexica-03-1 19.4 | 80.7 CU7565-02-0 6.5 | 956
ETHZ-02-1 18.1 | 83.8 cmu_tartan 00-1 7.8 | 954
ETHZ-00-1 23.5 | 73.7 flexica-01-1 92 | 942
flexica-02-1 21.8 | 77.5 cmu_tartan 02-1 11.2 | 94.4
*CU7565-01-0 28.8 | 914 ETHZ-02-1 18.9 | 91.7
flexica-01-1 26.0 | 76.7 ETHZ-00-1 20.3 | 89.3
Oracle (Baselines) 98.0 Oracle (Baselines) 99.2
Oracle (Submissions) 98.8 Oracle (Submissions) 99.4
Oracle (All) 99.1 Oracle (All) 99.6

(a) Results on the Indo-European family (28 languages) (b) Results on the Niger-Congo family (10 languages)
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Table 11: Results per Language Family: Oto-Manguean and Sino-Tibetan

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 87.5
BASE: trm-single 2.0 | 86.2
CULing-01-0 3.1 | 86.7
deepspin-02-1 34 | 854
deepspin-01-1 34 | 853
NYU-CUBoulder-04-0 6.4 | 84.2
BASE: mono-single 79 | 824
NYU-CUBoulder-03-0 84 | 835
BASE: mono-aug-single | 6.1 | 83.5
BASE: mono-shared 8.2 | 829
NYU-CUBoulder-02-0 9.1 | 835
IMS-00-0 10.3 | 83.3
LTI-00-1 94 | 824
NYU-CUBoulder-01-0 94 | 83.6
BASE: mono-aug-shared | 9.8 | 82.0
cmu_tartan _00-0 13.9 | 78.5
cmu_tartan 01-1 149 | 78.5
cmu_tartan 02-1 152 | 78.2
BASE: trm-shared 14.5 | 80.2
BASE: trm-aug-shared | 20.3 | 73.8
flexica-01-1 26.3 | 47.2
BASE: trm-aug-single 7.4 | 843
cmu_tartan_00-1 14.1 | 79.0
ETHZ-02-1 14.0 | 814
CU7565-02-0 209 | 75.1
cmu_tartan 01-0 183 | 76.5
*CU7565-01-0 27.8 | 81.0
ETHZ-00-1 254 | 70.5
flexica-02-1 25.6 | 67.0
flexica-03-1 26.1 | 64.2
Oracle (Baselines) 94.1
Oracle (Submissions) 96.2
Oracle (All) 96.7

(a) Results on the Oto-Manguean family (10 languages)

System ‘ Rank ‘ Acc
deepspin-01-1 1.0 | 85.1
deepspin-02-1 1.0 | 85.0

LTI-00-1 1.0 | 84.7
uiuc-01-0 1.0 | 84.4
BASE: trm-single 1.0 | 84.4
BASE: trm-shared 1.0 | 84.4
CULing-01-0 1.0 | 84.1
ETHZ-02-1 1.0 | 83.8
flexica-02-1 1.0 | 83.7
cmu_tartan 01-1 1.0 | 83.4
BASE: mono-aug-shared | 1.0 | 83.4
BASE: mono-aug-single | 1.0 | 83.4
NYU-CUBoulder-01-0 1.0 | 83.4
IMS-00-0 1.0 | 833
BASE: trm-aug-single 1.0 | 83.3
BASE: trm-aug-shared 1.0 | 833
BASE: mono-shared 1.0 | 83.2
BASE: mono-single 1.0 | 83.2
cmu_tartan_00-0 1.0 | 83.1
cmu_tartan 02-1 1.0 | 83.1
cmu_tartan 00-1 1.0 | 83.0
NYU-CUBoulder-03-0 | 22.0 | 82.8
ETHZ-00-1 22.0 | 82.8
cmu_tartan 01-0 22.0 | 82.7
NYU-CUBoulder-02-0 | 22.0 | 82.6
flexica-03-1 22.0 | 825
NYU-CUBoulder-04-0 | 22.0 | 81.7
flexica-01-1 28.0 | 70.6
CU7565-02-0 28.0 | 67.9
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 91.3
Oracle (Submissions) 96.0
Oracle (All) 96.2

(b) Results on the Sino-Tibetan family (1 language)



Table 12: Results per Language Family: Siouan and Songhay

System ‘ Rank ‘ Acc
NYU-CUBoulder-01-0 1.0 | 95.7
BASE: trm-single 1.0 | 95.6
CULing-01-0 1.0 | 95.6
BASE: trm-shared 1.0 | 95.6
ETHZ-00-1 1.0 | 955
uiuc-01-0 1.0 | 949
deepspin-01-1 1.0 | 94.8
NYU-CUBoulder-02-0 1.0 | 94.8
NYU-CUBoulder-03-0 1.0 | 94.7
deepspin-02-1 1.0 | 94.5
BASE: mono-aug-shared | 1.0 | 94.4
BASE: mono-aug-single | 1.0 | 94.4
NYU-CUBoulder-04-0 1.0 | 943
ETHZ-02-1 14.0 | 933
BASE: mono-single 14.0 | 92.9
BASE: mono-shared 14.0 | 92.9
BASE: trm-aug-single 14.0 | 92.5
BASE: trm-aug-shared | 14.0 | 92.5
flexica-02-1 14.0 | 91.5
IMS-00-0 14.0 | 90.9
LTI-00-1 21.0 | 89.7
flexica-03-1 21.0 | 893
cmu_tartan_01-0 23.0 | 85.7
cmu_tartan 01-1 23.0 | 85.7
cmu_tartan 02-1 23.0 | 85.7
cmu_tartan_00-0 23.0 | 85.5
cmu_tartan_00-1 23.0 | 85.5
CU7565-02-0 28.0 | 80.5
flexica-01-1 29.0 | 58.4
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 97.3
Oracle (Submissions) 98.1
Oracle (All) 98.1

(a) Results on the Siouan family (1 language)

System ‘ Rank ‘ Acc
BASE: mono-aug-single | 1.0 | 100.0
BASE: trm-aug-single 1.0 | 100.0
CU7565-02-0 1.0 | 100.0
CU7565-01-0 1.0 | 100.0
uiuc-01-0 1.0 | 100.0
NYU-CUBoulder-02-0 1.0 | 100.0
NYU-CUBoulder-03-0 1.0 | 100.0
BASE: mono-aug-shared | 1.0 | 100.0
NYU-CUBoulder-01-0 1.0 | 100.0
LTI-00-1 1.0 | 100.0
IMS-00-0 1.0 | 100.0
flexica-01-1 1.0 | 100.0
deepspin-02-1 1.0 | 100.0
deepspin-01-1 1.0 | 100.0
CULing-01-0 1.0 | 100.0
cmu_tartan_01-1 1.0 | 100.0
NYU-CUBoulder-04-0 1.0 | 100.0
BASE: trm-aug-shared 1.0 | 100.0
flexica-03-1 1.0 93.8
ETHZ-00-1 1.0 93.8
cmu_tartan 02-1 1.0 93.8
cmu_tartan 01-0 1.0 93.8
cmu_tartan_00-0 1.0 87.5
cmu_tartan 00-1 1.0 87.5
BASE: trm-shared 1.0 87.5
BASE: trm-single 1.0 87.5
flexica-02-1 27.0 0.0
BASE: mono-shared 27.0 0.0
BASE: mono-single 27.0 | 0.0
ETHZ-02-1 27.0 | 0.0
Oracle (Baselines) 100.0
Oracle (Submissions) 100.0
Oracle (All) 100.0

(b) Results on the Songhay family/genus (1 language)
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Table 13: Results per Language Family: Southern Daly and Tungusic

System ‘ Rank ‘ Acc
CULing-01-0 1.0 | 919
BASE: trm-single 1.0 | 89.6
BASE: trm-shared 1.0 | 89.6
ETHZ-00-1 1.0 | 88.7
uiuc-01-0 1.0 | 87.8
BASE: trm-aug-single 1.0 | 86.9
BASE: trm-aug-shared 1.0 | 86.9
IMS-00-0 1.0 | 86.0
deepspin-01-1 9.0 | 83.8
deepspin-02-1 9.0 | 83.3
cmu_tartan 01-1 9.0 | 81.1
cmu_tartan_01-0 9.0 | 81.1
cmu_tartan 00-0 9.0 | 80.2
cmu_tartan 00-1 9.0 | 80.2
ETHZ-02-1 15.0 | 77.9
CU7565-02-0 15.0 | 77.5
flexica-03-1 15.0 | 73.4
flexica-02-1 15.0 | 72.5
LTI-00-1 15.0 | 70.3
cmu_tartan 02-1 20.0 | 67.1
BASE: mono-shared 20.0 | 60.8
BASE: mono-single 20.0 | 60.8
NYU-CUBoulder-04-0 | 20.0 | 59.5
NYU-CUBoulder-03-0 | 20.0 | 59.0
NYU-CUBoulder-02-0 | 20.0 | 57.7
NYU-CUBoulder-01-0 | 20.0 | 57.7
BASE: mono-aug-single | 27.0 | 44.6
BASE: mono-aug-shared | 27.0 | 44.6
flexica-01-1 29.0 | 21.2
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 914
Oracle (Submissions) 96.4
Oracle (All) 96.4

(a) Results on the Southern Daly family (1 language)

System ‘ Rank ‘ Acc
deepspin-02-1 1.0 | 59.0
deepspin-01-1 1.0 | 58.8

uiuc-01-0 1.0 | 583
IMS-00-0 1.0 | 58.2
CULing-01-0 1.0 | 58.0
BASE: trm-aug-single 1.0 | 57.7
BASE: trm-aug-shared 1.0 | 57.7
ETHZ-00-1 1.0 | 572
BASE: trm-single 1.0 | 57.1
cmu_tartan 01-0 1.0 | 57.1
BASE: trm-shared 1.0 | 57.1
cmu_tartan_00-0 12.0 | 56.8
cmu_tartan 01-1 12.0 | 56.5
cmu_tartan 00-1 12.0 | 559
LTI-00-1 12.0 | 55.0
cmu_tartan 02-1 16.0 | 54.1
BASE: mono-single 16.0 | 54.0
BASE: mono-shared 16.0 | 54.0
ETHZ-02-1 16.0 | 53.6
BASE: mono-aug-single | 16.0 | 53.5
BASE: mono-aug-shared | 16.0 | 53.5
flexica-02-1 16.0 | 53.1
flexica-03-1 16.0 | 52.7
NYU-CUBoulder-01-0 | 24.0 | 50.0
NYU-CUBoulder-03-0 | 24.0 | 48.8
NYU-CUBoulder-02-0 | 24.0 | 48.6
NYU-CUBoulder-04-0 | 24.0 | 48.2
flexica-01-1 28.0 | 46.5
CU7565-02-0 29.0 | 43.5
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 67.7
Oracle (Submissions) 75.9
Oracle (All) 76.3

(b) Results on the Tungusic family (1 language)
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Table 14: Results per Language Family: Turkic and Uralic

System ‘ Rank ‘ Acc

BASE: trm-single 1.0 | 91.8
BASE: trm-aug-single 1.0 | 91.8
uiuc-01-0 1.8 | 92.0
CULing-01-0 3.5 1919
deepspin-02-1 6.7 | 91.3
deepspin-01-1 6.7 | 91.1
NYU-CUBoulder-04-0 55 1904
BASE: mono-single 5.1 | 90.9
NYU-CUBoulder-02-0 6.8 | 90.6
NYU-CUBoulder-03-0 6.8 | 90.5
cmu_tartan 01-1 7.2 | 91.0
cmu_tartan_00-1 6.6 | 90.8
BASE: mono-aug-single | 7.3 | 90.7
BASE: trm-shared 7.7 1913
cmu_tartan 02-1 74 | 90.8
NYU-CUBoulder-01-0 89 |90.5
BASE: trm-aug-shared 9.3 | 91.1
cmu_tartan 00-0 9.7 | 90.9
cmu_tartan 01-0 11.8 | 90.7
ETHZ-00-1 16.6 | 88.9
IMS-00-0 11.2 | 91.0
BASE: mono-shared 15.1 | 88.9
flexica-02-1 13.1 | 89.7
LTI-00-1 17.1 | 83.3
flexica-03-1 17.0 | 88.6
BASE: mono-aug-shared | 19.5 | 86.3
CU7565-02-0 21.6 | 85.9
ETHZ-02-1 17.5 | 88.6
*CU7565-01-0 29.1 | 96.4
flexica-01-1 289 | 724
Oracle (Baselines) 95.8
Oracle (Submissions) 97.4
Oracle (All) 97.5

(a) Results on the Turkic family (10 languages)

System ‘ Rank ‘ Acc
deepspin-02-1 1.8 | 90.7
deepspin-01-1 3.1 | 89.7

uiuc-01-0 2.8 | 88.2
CULing-01-0 39 | 88.9
BASE: trm-single 3.8 | 88.1
BASE: trm-aug-single 43 | 885
NYU-CUBoulder-04-0 10.6 | 86.8
NYU-CUBoulder-02-0 134 | 86.4
NYU-CUBoulder-03-0 13.4 | 86.0
IMS-00-0 14.8 | 86.1
NYU-CUBoulder-01-0 154 | 85.9
cmu_tartan_00-1 7.7 | 85.8
cmu_tartan 02-1 9.8 | 84.8
LTI-00-1 12.3 | 86.7
cmu_tartan 01-1 7.6 | 86.0
cmu_tartan 00-0 8.7 | 86.2
BASE: trm-aug-shared 18.8 | 82.6
*CU7565-02-0 22.2 | 794
*CU7565-01-0 28.2 |1 92.9
BASE: mono-single 10.8 | 83.0
cmu_tartan 01-0 10.6 | 84.8
BASE: mono-shared 17.6 | 81.1
BASE: mono-aug-shared | 19.4 | 81.9
BASE: trm-shared 19.5 | 76.8
ETHZ-02-1 22.6 | 67.9
BASE: mono-aug-single | 11.4 | 85.9
flexica-02-1 19.5 | 70.7
flexica-03-1 20.5 | 67.8
flexica-01-1 26.8 | 66.0
ETHZ-00-1 28.3 | 54.9
Oracle (Baselines) 95.5
Oracle (Submissions) 96.8
Oracle (All) 97.2

(b) Results on the Uralic family (16 languages)
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Table 15: Results per Language Family (Uto-Aztecan) and Semitic Genus (Afro-Asiatic Family)

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 825
NYU-CUBoulder-01-0 1.0 | 82.2
NYU-CUBoulder-02-0 1.0 | 81.8
NYU-CUBoulder-03-0 1.0 | 81.5
IMS-00-0 1.0 | 81.5
BASE: trm-single 1.0 | 80.9
CULing-01-0 1.0 | 80.9
BASE: trm-shared 1.0 | 80.9
deepspin-02-1 1.0 | 80.6
NYU-CUBoulder-04-0 1.0 | 79.6
ETHZ-00-1 1.0 | 793
LTI-00-1 1.0 | 79.0
deepspin-01-1 1.0 | 79.0
BASE: trm-aug-single 14.0 | 78.0
BASE: trm-aug-shared 14.0 | 78.0
flexica-02-1 14.0 | 77.7
BASE: mono-aug-single | 14.0 | 77.4
BASE: mono-aug-shared | 14.0 | 77.4
cmu_tartan 00-0 14.0 | 76.1
cmu_tartan 00-1 14.0 | 76.1
cmu_tartan 01-0 14.0 | 75.8
cmu_tartan 01-1 14.0 | 75.8
BASE: mono-shared 14.0 | 75.8
BASE: mono-single 14.0 | 75.8
flexica-03-1 14.0 | 75.5
ETHZ-02-1 14.0 | 74.5
cmu_tartan 02-1 14.0 | 74.2
CU7565-01-0 28.0 | 71.0
CU7565-02-0 29.0 | 624
flexica-01-1 30.0 | 54.8
Oracle (Baselines) 87.2
Oracle (Submissions) 92.0
Oracle (All) 92.3

(a) Results on the Uto-Aztecan family (1 language)

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 95.6
CULing-01-0 1.0 | 949
deepspin-02-1 5.0 |933
BASE: trm-single 55 1939
BASE: trm-aug-single 55 | 93.1
deepspin-01-1 55 1925
NYU-CUBoulder-01-0 55 1924
NYU-CUBoulder-02-0 55 1923
NYU-CUBoulder-04-0 14.0 | 92.0
BASE: mono-aug-shared | 9.0 | 91.3
BASE: mono-single 9.0 |90.2
cmu_tartan_00-0 9.0 | 90.0
cmu_tartan 01-1 13.5 | 854
cmu_tartan 01-0 13.5 | 85.2
cmu_tartan 02-1 145 | 72.3
ETHZ-00-1 9.5 |925
BASE: trm-aug-shared 9.5 | 91.8
BASE: trm-shared 9.5 | 91.7
IMS-00-0 9.5 | 91.7
BASE: mono-aug-single | 9.5 | 90.9
CU7565-02-0 9.5 |90.6
NYU-CUBoulder-03-0 18.0 | 91.2
LTI-00-1 13.5 | 90.1
flexica-02-1 13.5 | 90.1
ETHZ-02-1 13.5 | 89.5
flexica-03-1 13.5 | 89.2
cmu_tartan 00-1 13.5 | 89.0
BASE: mono-shared 13.5 | 88.5
*CU7565-01-0 28.5 | 88.3
flexica-01-1 28.0 | 63.9
Oracle (Baselines) 98.4
Oracle (Submissions) 99.6
Oracle (All) 99.7

(b) Results on the Semitic genus (2 languages)
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Table 16: Results per Language Genus (in Indo-European family)

System ‘ Rank ‘ Acc
deepspin-02-1 34 | 87.1
deepspin-01-1 4.6 | 87.0

uiuc-01-0 35 | 874
BASE: trm-single 3.1 | 87.5
CULing-01-0 3.5 | 883
BASE: trm-aug-single 49 | 874
IMS-00-0 15.1 | 83.1
BASE: mono-single 53 | 86.3
BASE: mono-aug-single | 6.8 | 86.3
NYU-CUBoulder-04-0 | 10.2 | 85.2
NYU-CUBoulder-02-0 | 13.1 | 83.3
NYU-CUBoulder-03-0 | 12.0 | 84.4
LTI-00-1 11.1 | 84.3
cmu_tartan 00-1 9.8 | 79.5
NYU-CUBoulder-01-0 14.5 | 83.0
BASE: mono-aug-shared | 13.2 | 84.4
cmu_tartan 01-0 11.1 | 78.9
cmu_tartan_01-1 11.1 | 78.8
cmu_tartan 00-0 10.8 | 79.3
BASE: trm-shared 19.5 | 77.7
BASE: trm-aug-shared 19.5 | 79.1
BASE: mono-shared 11.7 | 83.7
cmu_tartan 02-1 13.2 | 78.5
CU7565-02-0 19.4 | 78.6
ETHZ-02-1 18.9 | 76.4
flexica-01-1 26.2 | 66.6
flexica-03-1 25.5 | 66.5
flexica-02-1 259 | 64.2
ETHZ-00-1 27.1 | 60.1
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 97.0
Oracle (Submissions) 98.4
Oracle (All) 98.9

(a) Results on the Germanic genus (13 languages)

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 98.2
deepspin-02-1 1.5 | 98.1
deepspin-01-1 1.5 | 98.0
BASE: trm-single 1.5 | 97.9
BASE: trm-aug-single 1.5 | 97.8
BASE: trm-shared 2.8 | 979
CULing-01-0 7.5 | 98.0
BASE: mono-single 6.0 | 97.6
NYU-CUBoulder-04-0 50 |97.7
cmu_tartan 02-1 7.8 | 974
cmu_tartan 00-1 7.0 | 974
BASE: mono-shared 7.0 | 973
cmu_tartan 01-1 7.8 | 973
cmu_tartan 00-0 8.8 | 97.1
NYU-CUBoulder-03-0 85 |974
NYU-CUBoulder-02-0 92 |974
NYU-CUBoulder-01-0 92 973
BASE: trm-aug-shared 11.0 | 97.7
BASE: mono-aug-single | 9.5 | 97.2
flexica-03-1 9.5 |97.1
flexica-02-1 11.0 | 96.8
ETHZ-02-1 11.5 | 974
ETHZ-00-1 13.8 | 96.4
BASE: mono-aug-shared | 15.8 | 94.2
cmu_tartan 01-0 172 | 96.9
IMS-00-0 17.0 | 96.6
CU7565-02-0 19.8 | 94.8
LTI-00-1 19.8 | 81.5
*CU7565-01-0 29.0 | 89.0
flexica-01-1 28.8 | 88.1
Oracle (Baselines) 99.2
Oracle (Submissions) 99.6
Oracle (All) 99.7

(b) Results on the Indic genus (4 languages)
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Table 17: Results per Language Genus (in Indo-European family)

System ‘ Rank ‘ Acc
CULing-01-0 1.0 | 953
deepspin-01-1 2.0 | 94.6
deepspin-02-1 2.0 | 94.6

BASE: trm-aug-shared 2.0 | 945
BASE: trm-aug-single 20 | 945
BASE: trm-shared 2.0 | 86.2
cmu_tartan_02-1 43 | 94.0
BASE: mono-aug-single | 4.3 | 93.8
BASE: mono-shared 43 | 92.0
NYU-CUBoulder-03-0 43 918
cmu_tartan_00-1 43 | 918
ETHZ-02-1 43 918
NYU-CUBoulder-04-0 43 | 83.7
uiuc-01-0 93 | 825
BASE: trm-single 9.3 | 82.2
IMS-00-0 9.3 |943
ETHZ-00-1 10.3 | 81.7
cmu_tartan_01-0 10.0 | 94.0
cmu_tartan 01-1 10.0 | 93.8
cmu_tartan_00-0 13.0 | 91.9
NYU-CUBoulder-02-0 | 10.0 | 91.8
flexica-03-1 11.7 | 87.2
BASE: mono-single 14.0 | 62.7
*CU7565-01-0 20.3 | 93.8
BASE: mono-aug-shared | 14.7 | 93.3
NYU-CUBoulder-01-0 147 | 914
CU7565-02-0 17.7 | 90.9
LTI-00-1 18.3 | 86.2
flexica-01-1 193 | 77.5
flexica-02-1 20.0 | 70.6
Oracle (Baselines) 97.3
Oracle (Submissions) 97.5
Oracle (All) 97.7

(a) Results on the Iranian genus (3 languages)

System ‘ Rank ‘ Acc
deepspin-02-1 1.0 | 99.3
BASE: trm-single 1.0 | 99.2
deepspin-01-1 1.0 | 99.1
uiuc-01-0 1.0 | 98.7
BASE: trm-aug-single 2.5 | 98.7
CULing-01-0 3.8 |99.1
cmu_tartan 00-0 44 | 98.0
BASE: mono-shared 7.1 | 97.0
NYU-CUBoulder-04-0 49 | 98.8
cmu_tartan 01-0 6.4 | 98.2
BASE: trm-shared 8.0 | 96.6
BASE: mono-aug-shared | 10.4 | 97.6
cmu_tartan 00-1 74 | 97.9
cmu_tartan 01-1 9.0 | 98.1
NYU-CUBoulder-03-0 9.8 | 98.9
NYU-CUBoulder-01-0 9.8 | 98.6
NYU-CUBoulder-02-0 10.2 | 98.5
BASE: mono-aug-single | 10.2 | 97.5
BASE: mono-single 11.5 | 95.5
cmu_tartan 02-1 10.5 | 97.8
BASE: trm-aug-shared 145 | 97.2
flexica-03-1 17.2 | 93.1
IMS-00-0 19.0 | 97.6
LTI-00-1 20.4 | 96.3
CU7565-02-0 23.1 | 929
flexica-02-1 21.2 | 92.0
flexica-01-1 26.9 | 87.1
ETHZ-02-1 25.1 | 86.1
ETHZ-00-1 275 | 814
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 99.4
Oracle (Submissions) 99.7
Oracle (All) 99.7

(b) Results on the Romance genus (8 languages)
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Table 18: Results per Language Genus (in Niger-Congo family)

System ‘ Rank ‘ Acc
uiuc-01-0 1.0 | 97.7
IMS-00-0 1.0 | 97.6

CULing-01-0 1.0 | 96.9
NYU-CUBoulder-01-0 14 | 979
NYU-CUBoulder-02-0 14 | 979
NYU-CUBoulder-03-0 14 | 979

deepspin-02-1 14 | 97.6

BASE: mono-aug-single | 1.4 | 97.5
BASE: trm-single 14 | 974

deepspin-01-1 14 | 973
NYU-CUBoulder-04-0 14 | 973

LTI-00-1 14 | 973

BASE: trm-shared 14 | 97.2
BASE: mono-single 1.4 | 97.1
BASE: trm-aug-single 14 | 97.0
BASE: mono-shared 14 | 97.0
BASE: trm-aug-shared 1.4 | 96.7
BASE: mono-aug-shared | 1.4 | 96.6
*CU7565-01-0 4.6 | 974
flexica-02-1 3.6 | 96.2
flexica-03-1 3.6 | 96.2
CU7565-02-0 42 | 958
cmu_tartan 01-1 42 | 95.6
cmu_tartan 01-0 42 |955
cmu_tartan_00-0 42 | 955
cmu_tartan 00-1 6.5 | 949
flexica-01-1 79 | 934
cmu_tartan 02-1 13.8 | 93.3
ETHZ-02-1 16.9 | 92.0
ETHZ-00-1 18.2 | 89.6
Oracle (Baselines) 98.9
Oracle (Submissions) 99.3
Oracle (All) 99.5

(a) Results on the Bantoid genus (8 languages)

System ‘ Rank ‘ Acc
BASE: mono-shared 1.0 | 100.0
BASE: mono-single 1.0 | 100.0
CU7565-01-0 1.0 | 100.0
IMS-00-0 1.0 | 100.0
deepspin-02-1 1.0 | 100.0
deepspin-01-1 1.0 | 100.0
flexica-03-1 1.0 | 99.9
BASE: trm-shared 1.0 99.9
BASE: mono-aug-single | 1.0 99.9
cmu_tartan_00-0 1.0 99.9
BASE: trm-aug-shared 1.0 | 99.9
BASE: trm-aug-single 1.0 99.7
cmu_tartan 01-1 1.0 99.7
BASE: mono-aug-shared | 1.0 99.6
NYU-CUBoulder-04-0 1.0 99.6
LTI-00-1 1.0 | 99.5
flexica-02-1 1.0 99.3
cmu_tartan_01-0 1.0 99.3
BASE: trm-single 1.0 98.8
NYU-CUBoulder-01-0 1.0 | 98.8
NYU-CUBoulder-02-0 1.0 | 98.8
NYU-CUBoulder-03-0 1.0 | 98.7
cmu_tartan_02-1 1.0 98.7
uiuc-01-0 1.0 98.5
CULing-01-0 13.0 | 98.0
cmu_tartan 00-1 13.0 | 97.7
flexica-01-1 145 | 974
CU7565-02-0 15.5 | 949
ETHZ-02-1 27.0 | 904
ETHZ-00-1 28.5 | 879
Oracle (Baselines) 100.0
Oracle (Submissions) 100.0
Oracle (All) 100.0

(b) Results on the Kwa genus (2 languages)
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Table 19: Results per Language Genus (in Oto-Manguean Family)

System ‘ Rank ‘ Acc System ‘ Rank ‘ Acc
CULing-01-0 1.0 | 93.9 uiuc-01-0 1.0 | 81.1
uiuc-01-0 1.0 | 935 CULing-01-0 1.5 | 80.3
BASE: trm-single 1.0 | 92.8 BASE: trm-single 3.5 | 789
deepspin-01-1 2.5 |93.1 deepspin-02-1 22 | 78.7
NYU-CUBoulder-04-0 2.5 |93.1 deepspin-01-1 2.2 | 783
deepspin-02-1 2.5 |92.6 NYU-CUBoulder-04-0 22 | 712
NYU-CUBoulder-03-0 2.5 | 925 IMS-00-0 3.8 | 78.0
NYU-CUBoulder-02-0 6.0 | 923 NYU-CUBoulder-02-0 3.8 | 771
BASE: mono-single 6.0 | 92.1 NYU-CUBoulder-03-0 3.8 | 77.0
NYU-CUBoulder-01-0 6.0 | 92.0 LTI-00-1 6.8 | 73.9
BASE: mono-aug-single | 6.0 | 91.6 NYU-CUBoulder-01-0 48 | 775
BASE: trm-aug-single 6.0 | 914 BASE: mono-aug-single | 8.2 | 73.8
IMS-00-0 10.5 | 914 BASE: mono-aug-shared | 9.2 | 72.9
BASE: mono-aug-shared | 10.5 | 90.0 cmu_tartan 01-1 12.0 | 69.2
BASE: mono-shared 10.5 | 89.9 cmu_tartan_00-0 13.0 | 68.5
LTI-00-1 13.0 | 89.6 cmu_tartan 02-1 13.0 | 68.5
cmu_tartan_00-1 13.0 | 87.9 BASE: trm-aug-shared 152 | 65.9
ETHZ-02-1 15.5 | 89.7 BASE: mono-shared 11.2 | 73.5
BASE: trm-shared 15.5 | 89.5 flexica-01-1 21.8 | 51.0
cmu_tartan 02-1 18.0 | 87.3 BASE: trm-aug-single 9.2 | 75.7
cmu_tartan_00-0 18.0 | 87.1 ETHZ-02-1 15.0 | 71.7
cmu_tartan 01-1 20.5 | 86.7 CU7565-02-0 16.5 | 68.5
cmu_tartan 01-0 18.0 | 86.3 BASE: trm-shared 152 | 71.0
BASE: trm-aug-shared | 21.0 | 84.2 BASE: mono-single 15.2 | 70.4
ETHZ-00-1 22.0 | 82.7 cmu_tartan_00-1 16.5 | 68.9
*CU7565-01-0 28.0 | 81.7 cmu_tartan 01-0 17.5 | 66.5
CU7565-02-0 26.5 | 76.3 *CU7565-01-0 26.2 | 75.7
flexica-02-1 26.5 | 69.2 ETHZ-00-1 26.2 | 60.5
flexica-03-1 28.0 | 66.1 flexica-02-1 27.0 | 543
flexica-01-1 29.5 | 40.9 flexica-03-1 28.2 | 49.0
Oracle (Baselines) 96.4 Oracle (Baselines) 89.9
Oracle (Submissions) 97.1 Oracle (Submissions) 93.7
Oracle (All) 97.4 Oracle (All) 94.3
(a) Results on the Amuzgo-Mixtecan genus (2 languages) (b) Results on the Zapotecan genus (4 languages)
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Table 20: Results per Language Genus (in Oto-Manguean and Uralic Families)

System ‘ Rank ‘ Acc

BASE: mono-shared 1.0 | 98.6
uiuc-01-0 1.0 | 98.6
deepspin-02-1 1.0 | 98.5
BASE: trm-single 1.0 | 98.4
BASE: mono-single 1.0 | 984
BASE: mono-aug-single | 1.0 | 98.4
deepspin-01-1 1.0 | 98.4
BASE: mono-aug-shared | 8.0 | 98.2
BASE: trm-aug-single 8.0 | 98.1
CULing-01-0 95 | 977
LTI-00-1 11.5 | 97.2
cmu_tartan 01-1 12.0 | 96.2
cmu_tartan 00-1 12.0 | 96.8
cmu_tartan_00-0 12.0 | 96.7
NYU-CUBoulder-04-0 13.5 | 96.5
cmu_tartan 02-1 14.0 | 96.3
ETHZ-02-1 15.5 | 95.9
BASE: trm-shared 16.5 | 94.2
NYU-CUBoulder-03-0 | 18.5 | 94.1
NYU-CUBoulder-02-0 | 18.5 | 94.1
NYU-CUBoulder-01-0 | 20.0 | 93.7
flexica-03-1 21.0 | 93.1
flexica-02-1 22.5 | 93.1
cmu_tartan 01-0 20.5 | 91.9
CU7565-02-0 25.0 | 91.1
IMS-00-0 245 1 91.0
*CU7565-01-0 28.5 | 90.9
BASE: trm-aug-shared | 25.5 | 87.3
ETHZ-00-1 27.5 | 853
flexica-01-1 29.5 | 64.2
Oracle (Baselines) 99.7
Oracle (Submissions) 99.9
Oracle (All) 99.9

(a) Results on the Otomian genus (2 languages)

System ‘ Rank ‘ Acc
deepspin-02-1 22 | 87.4
uiuc-01-0 2.6 | 83.5
deepspin-01-1 3.8 | 85.8
BASE: trm-aug-single 4.0 | 84.1
BASE: trm-single 43 | 83.4
CULing-01-0 52 | 84.6
NYU-CUBoulder-04-0 7.0 | 83.0
NYU-CUBoulder-02-0 | 10.0 | 82.8
NYU-CUBoulder-03-0 9.8 | 822
IMS-00-0 12.3 | 82.2
NYU-CUBoulder-01-0 | 12.0 | 82.4
cmu_tartan_00-1 8.3 | 80.0
cmu_tartan 02-1 8.3 | 80.2
LTI-00-1 12.3 | 81.9
cmu_tartan 01-1 8.0 | 80.3
cmu_tartan 00-0 9.4 | 80.8
BASE: trm-aug-shared 18.9 | 76.9
CU7565-02-0 20.3 | 74.0
*CU7565-01-0 27.1 | 92.9
BASE: mono-single 12.6 | 75.5
cmu_tartan 01-0 11.7 | 78.6
BASE: mono-shared 15.8 | 74.8
BASE: mono-aug-shared | 169 | 77.4
BASE: trm-shared 212 | 67.3
ETHZ-02-1 20.6 | 61.0
BASE: mono-aug-single | 11.2 | 80.7
flexica-02-1 212 | 573
flexica-03-1 23.0 | 525
flexica-01-1 26.6 | 56.1
ETHZ-00-1 28.2 | 45.7
Oracle (Baselines) 93.9
Oracle (Submissions) 95.8
Oracle (All) 96.3

(b) Results on the Finnic genus (10 languages)
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Table 21: Results per Language Genus (in Uralic Family)

System ‘ Rank ‘ Acc
deepspin-01-1 1.0 | 97.9
deepspin-02-1 1.0 | 97.9
CULing-01-0 20 | 97.8

BASE: trm-single 3.0 | 97.7
cmu_tartan_00-1 50 | 974
uiuc-01-0 50 |97.6
BASE: trm-aug-single 50 | 97.6
cmu_tartan 00-0 6.0 | 974
cmu_tartan 01-1 6.0 | 97.3
cmu_tartan 02-1 12.5 | 95.6
cmu_tartan 01-0 9.0 | 97.1
BASE: mono-single 9.5 |97.0
BASE: mono-aug-single | 11.0 | 96.7
NYU-CUBoulder-04-0 | 14.0 | 95.6
LTI-00-1 13.5 | 96.7
BASE: trm-shared 14.5 | 95.7
BASE: trm-aug-shared 17.0 | 95.6
flexica-02-1 18.5 | 95.0
NYU-CUBoulder-02-0 | 18.5 | 94.8
IMS-00-0 19.0 | 94.8
NYU-CUBoulder-03-0 | 18.5 | 94.8
NYU-CUBoulder-01-0 | 18.5 | 94.7
flexica-03-1 19.0 | 94.6
BASE: mono-shared 21.0 | 94.5
CU7565-02-0 23.5 1933
BASE: mono-aug-shared | 26.0 | 91.5
flexica-01-1 27.0 | 88.7
ETHZ-02-1 28.0 | 79.4
ETHZ-00-1 29.0 | 734
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 98.6
Oracle (Submissions) 99.0
Oracle (All) 99.2

(a) Results on the Permic genus (2 languages)

System ‘ Rank ‘ Acc
deepspin-02-1 1.0 | 94.0
CULing-01-0 1.0 | 939

BASE: trm-single 1.0 | 939
uiuc-01-0 1.0 | 93.8
BASE: trm-aug-single 3.5 | 93.7
deepspin-01-1 3.5 | 93.6
cmu_tartan_02-1 6.5 | 933
cmu_tartan 00-1 6.5 | 93.2
cmu_tartan 01-1 6.5 | 932
cmu_tartan 01-0 6.5 | 93.2
cmu_tartan_00-0 6.5 | 932
BASE: mono-single 9.5 |93.0
LTI-00-1 9.5 |92.8
BASE: trm-shared 13.5 | 92.0
BASE: mono-aug-single | 14.5 | 92.3
BASE: trm-aug-shared 150 | 919
IMS-00-0 17.0 | 91.5
NYU-CUBoulder-04-0 18.5 | 90.8
flexica-03-1 18.5 | 90.5
flexica-02-1 18.5 | 90.5
NYU-CUBoulder-03-0 19.5 | 90.2
NYU-CUBoulder-02-0 19.5 | 90.2
NYU-CUBoulder-01-0 | 23.5 | 89.5
BASE: mono-shared 21.5 | 88.9
BASE: mono-aug-shared | 24.5 | 87.2
CU7565-02-0 255 | 85.2
flexica-01-1 27.0 | 82.1
ETHZ-02-1 28.0 | 73.7
ETHZ-00-1 28.5 | 67.9
*CU7565-01-0 30.0 | 0.0
Oracle (Baselines) 97.0
Oracle (Submissions) 97.6
Oracle (All) 98.0

(b) Results on the Mordvin genus (2 languages)
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Abstract

We describe the design and findings of the
SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Par-
ticipants were asked to submit systems which
consume a sequence of graphemes then emit
output a sequence of phonemes representing
the pronunciation of that grapheme sequence
in one of fifteen languages. Nine teams sub-
mitted a total of 23 systems, at best achiev-
ing an 18% relative reduction in word error
rate (macro-averaged over languages), versus
strong neural sequence-to-sequence baselines.
To facilitate error analysis, we publicly release
the complete outputs for all systems—a first
for the SIGMORPHON workshop.

1 Introduction

Speech technologies such as automatic speech
recognition and text-to-speech synthesis require
mappings between written words and their pronun-
ciations. Even recent attempts to do away with ex-
plicit pronunciation models via “end-to-end” sys-
tems (e.g., Watts et al. 2013, Chan et al. 2016,
Soteloetal.2017,Chiuetal.2018,Pinoetal.2019,
McCarthy et al. 2020) must induce an implicit
mapping of this sort. For open-vocabulary ap-
plications, these mappings must generalize to un-
seen words, and so must be expressed as mappings
between sequences of graphemes—i.e., glyphs—
and phonemes or phones—i.e., sounds.!

For some languages, this mapping is suffi-
ciently consistent that a literate, linguistically-
sophisticated speaker can simply enumerate the
necessary rules; this sequence of rules can then

'We note that the term phoneme is a well-defined ob-
ject in linguistic theory, and that referring to the elements of
transcriptions as phonemes makes strong ontological commit-
ments which may not be appropriate for a given pronunciation
dictionary (cf. Lee et al. 2020, fn. 4). Therefore, in what fol-

lows we use the term phone, in a pre-theoretical sense, to refer
to transcriptions symbols.
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be compiled into a finite-state transducer (e.g.,
Sproat 1996, Black et al. 1998). However, rule-
based systems require linguistic expertise to de-
velop and maintain, and may be brittle or inac-
curate. Therefore, modern speech engines usu-
ally treat grapheme-to-phoneme conversion as a
machine learning problem, either using generative
models expressed as weighted finite-state trans-
ducers (e.g., Taylor 2005, Bisani and Ney 2008,
Wu et al. 2014, Novak et al. 2016) or discrimi-
native models based on conditional random fields
(Lehnen et al. 2013), recurrent neural networks
(e.g., Rao et al. 2015, Yao and Zweig 2015, van
Esch et al. 2016, Lee et al. 2020) or transformers
(Yolchuyeva et al. 2019).

While the grapheme-to-phoneme conversion
(or G2P) task is crucial to speech technology,
the vast majority of published research focuses
on English or a few other highly-resourced, glob-
ally hegemonic languages for which free pronun-
ciation dictionaries are available. One excep-
tion, a recent study by van Esch et al. (2016),
compares naive rule-based systems and neural
network-based sequence-to-sequence models for
20 languages; unfortunately, the data used in this
study is proprietary. Like many other types of lan-
guage resources, pronunciation dictionaries are ex-
pensive to create and maintain, and until recently,
free high-quality dictionaries were only available
for a small number of languages.

This limitation to a handful of languages is
unfortunate because, as we discuss below, writ-
ing systems are almost as diverse as languages
themselves. Therefore, we present a multilingual
grapheme-to-phoneme conversion task with data
sets, evaluation metrics, and strong baselines. In
this we are aided by the recent release of WikiPron
(Lee et al. 2020), a freely available collection of
pronunciation dictionaries. The resulting task, the
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first of its kind, included data from fifteen lan-
guages and scripts, and received 23 submissions
from nine teams.

2 Data

Fifteen language/script pairs were chosen to cover
a wide variety of script types. Ten of the scripts
are alphabetic systems known to descend from
Phoenician (and ultimately from Egyptian hiero-
glyphs); of these, seven are variants of the Latin
script. Two others, the Armenian aybuben and the
Georgian mkhedruli, are alphabetic scripts of un-
known origin, but may ultimately be modeled on
Greek (Sanjian 1996). The devanagart script used
to write Hindi, is an alphasyllabary,in which most
glyphs—known traditionally as aksara—denote
consonant and consonant-vowel sequences. Vow-
els (or their absence) are primarily indicated with
diacritics. It too is thought to ultimately descend
from Phoenician. Hiragana, one of several scripts
used to write Japanese, is a syllabary, in which
most glyphs denote entire syllables The glyphs
themselves are derived from Chinese characters.
Like hiragana, the Korean hangul script is also a
syllabary It may have been have been inspired by
‘phags-pa, a Tibetan alphabet which is itself a dis-
tant cousin of devanagarT (Ledyard 1966).

It is important to note that languages—and the
scripts used to write them—differ enormously in
their affordances for grapheme-to-phoneme con-
version. Writing systems are, at their core, lin-
guistic analyses, albeit sometimes quite naive, and
(as argued in DeFrancis 1989) explicitly encode
details of the phonological and phonetic structure
of the language they are used to write. Still, the
exact details of these mappings can vary greatly
between even closely related languages and/or
scripts. Whereas related languages may retain tell-
tale grammatical features across millennia, dozens
of languages have abruptly switched from one
script to another in just the last century, usually
in response to political—rather than linguistic—
concerns. It is thus unsurprising that Bjerva and
Augenstein (2018) find grapheme embeddings in-
duced by training G2P systems are poorly corre-
lated with gross phonological typology, and exper-
iments with “polyglot” G2P models (e.g., Peters
et al. 2017) have produced equivocal results.

While we did not pay particular attention to
language families when selecting language fam-
ily, we note that nine of the languages are Indo-
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European (though no two are closely related) and
none of the remaining six— Adyghe, Georgian,
Hungarian, Japanese, Korean, and Vietnamese —
are known to be genetically related to each other.

3 Methods

The primary data for the shared task is derived
from WikiPron (Lee et al. 2020), a massively
multilingual resource of grapheme—phoneme pairs
extracted from Wiktionary, an online multilin-
gual dictionary. Depending on language and
script, these pronunciations may be manually en-
tered by human volunteers —usually working from
language-specific pronunciation guidelines—or
generated using server-side scripting routines;
some languages (e.g., Bulgarian and French) use
a mixture of the two approaches. WikiPron is
configured to apply case-folding where appropri-
ate. It removes stress and syllable boundary mark-
ers and segments pronunciation strings —encoded
in the International Phonetic Alphabet—using the
segments library (Moran and Cysouw 2018).

For this task, words with multiple
pronunciations—both homographs and free
pronunciation variants—were excluded, since
pronunciations for such words are often selected
by a rather different procedure: they are chosen
from a small, predetermined set of possible
pronunciations using classifiers conditioned on
local context (e.g., Gorman et al. 2018).

Training and development data for ten
languages—the “development” languages—was
released at the start of the task; equivalent data
for the five “surprise” languages was released
one week before the start the evaluation phase.
Table 1 provides sample training data pairs for the
development and surprise languages.

As there is considerable variation in the num-
ber of available examples for any given language,
each languages’ data was downsampled to 4,500
examples. We regard as a “medium-resource” set-
ting for this task; these data sets are, for instance,
several orders of magnitude smaller than the pro-
prietary G2P data used by van Esch et al. (2016).
Following similar procedures in other shared tasks
(e.g., Cotterell et al. 2017), words were sampled
according to their frequency in the largest avail-
able Wortschatz (Goldhahn et al. 2012) corpus for
that language. These frequencies were smoothed
by adding a 0.3 pseudo-count to the frequency of
all WikiPron entries. Wortschatz frequency data



Language ISO 639-2 Example training data pair
Armenian arm dtbwpwbwl me tsaktanak
Bulgarian bul CeBEPOM3TOK severoistok
French fre hébergement eberg3zomad
Georgian geo }mmIosbo prormriant
Modern Greek gre nofwopéveg kabizmenes
Hindi hin FHeApc kelkoletor
Hungarian hun csenddrok tfendorok
Icelandic hin pyskaland Oiskalant
Korean kor ZEo]Alo} malleietia
Lithuanian lit galinciais galinitifiejs
Adyghe ady O3bIlyKbONISH bzowqg¥alan
Dutch dut aanduiding aindeeydiy
Japanese hiragana jpn ¥Y55X%  doteirasama
Romanian rum bineinteles bineintseles
Vietnamese vie duyén phan zwiondifoni?

Table 1: Languages, language codes, and example training data pairs for the shared task.

was not available for Adyghe, so uniform sam-
pling was used for this language.

The downsampled data was then randomly split
into training (80%; 3,600 examples), development
(10%; 450 examples), and testing (10%; 450 exam-
ples) shards. For some languages, Wiktionary con-
tains pronunciations for both lemmas (i.e., head-
words, citations forms) and inflection variants; for
others, pronunciations are only available for lem-
mas. We hypothesized that cases where one inflec-
tional variant of a lemma is present in the train-
ing data and another in the test data—as might
occur if the data was split totally at random—
would make the overall task somewhat easier. To
forestall this possibility, the splitting procedure
was constrained so that all inflectional variants of
any given lemma—according to the UniMorph 2
(Kirov et al. 2018) paradigm tables, also extracted
from Wiktionary—are limited to a single shard.
For example, since the French word acteur ‘actor’
occurs in the training shard, so must its plural form
acteurs. This additional constraint was applied
to all languages but Japanese and Vietnamese, for
which no UniMorph data was available. We note
that Wiktionary does not generally provide pronun-
ciations for inflectional variants in Japanese, and
that Vietnamese is a highly isolating language with
no discernable system of inflection (Noyer 1998),
so this is unlikely to have introduced bias.
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4 Evaluation

The primary metric for this task was word error
rate (WER); we also report phone error rate (PER).

WER This is the percentage of words for which
the hypothesized transcription sequence is not
identical to the gold reference transcription; lower
WER indicates better performance. Following
common practice in speech research, we multiply
the WER by 100 and display it as a percentage. We
choose this as the primary metric for the shared
task because we hypothesize that any G2P error,
no matter how small, will result in a substantial
degradation in subjective quality for downstream
speech applications.

PER This is a more forgiving measure measur-
ing the normalized distance (i.e., in number of in-
sertions, deletions, and substitutions) between the
predicted and reference transcriptions. It is com-
puted by summing the minimum edit distance—
computed with the Wagner and Fischer (1974)
algorithm —between prediction and reference tran-
scriptions, and dividing by the sum of the refer-
ence transcription lengths. That is,

> iedits(p, r)
25 Irl

where p is the predicted pronunciation sequence,
r is the reference sequence, and edits(p, r) is the

PER := 100 x



Levenshtein distance between the two. Once
again, we multiply it by 100, though strictly speak-
ing it is not a true percentage because it can hypo-
thetically exceed 100. As with WER, lower PER
indicates better performance.

Participants were provided with two evalua-
tion scripts: one which computes the two metrics
for a single language, and another which macro-
averages the metrics across all languages.

5 Baselines

Three baselines were made available at the start
of the task. To aid reproducibility, participants
were also provided with a Conda “environment”,
a schematic that allows users to reconstruct the ex-
act software environment used to train and eval-
uate the baselines. Several submissions made use
of the baselines for data augmentation or ensemble
construction. We make these baseline implementa-
tions available under the task1/baselines sub-
directory of the shared task repository.

Pair n-gram model The first baseline consists
of a pair n-gram model, which be can thought of
as a finite-state approximation of a hidden Markov
model with states representing graphemes and
emissions representing output phones. The model
is quite similar to the Phonetisaurus toolkit (No-
vak et al. 2016), but here is implemented using
the OpenGrm toolkit (Roark et al. 2012, Gorman
2016); see Lee et al. 2020 for a full description.
The sole hyperparameter for this model, Markov
model order, is tuned separately for each language
using the development set.

Encoder-decoder LSTM The second baseline
is a neural network sequence-to-sequence model
consisting of a single-layer bidirectional LSTM
encoder and a single-layer unidirectional LSTM
decoder connected using an attention mechanism
(Luong et al. 2015). It is implemented using the
fairseq library (Ott et al. 2019). LSTM-based
encoder-decoder models have been claimed to out-
perform pair n-gram G2P models, both in monolin-
gual (e.g., Rao et al. 2015, Yao and Zweig 2015)
and multilingual (e.g., van Esch et al. 2016, Lee
et al. 2020) evaluations, though these prior studies
use substantially more training data than is avail-
able in this task. During training, we perform
4,000 updates to minimize label-smoothed cross-
entropy (Szegedy et al. 2016) with a smoothing

*https://github.com/sigmorphon/2020
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rate of .1. We use the Adam optimizer (Kingma
and Ba 2015) with a learning rate of a = .001 and
weight decay coefficients of f = (.9, .98), and clip
norms exceeding 1.0. We use the development set
to tune —for each language — batch size (256,512,
1024), dropout (.1,.2,.3), and the size of the en-
coder and decoder modules. A module is said to
be “small” when it has a 128-dimension embed-
ding layer and a 512-unit hidden layer, and “large”
when it has a 256-dimension embedding layer and
a 1024-unit hidden layer. In both cases, the de-
coder shares a single embedding layer for both in-
puts and outputs. Altogether, this defines a 36-
element hyperparameter grid. During tuning, we
employ a form of early stopping; we save a check-
point every 5 epochs, and then use the checkpoint
that achieves the lowest WER on the development
set. We use a beam of size 5 for decoding.

Encoder-decoder transformer The third base-
line is a transformer, a neural sequence-to-
sequence models that replaces hidden layer re-
currence with layers of multi-head self-attention
(Vaswani et al. 2017). Once again, it is imple-
mented using fairseq. Here the model con-
sists of four encoder layers and four decoder lay-
ers, both with pre-layer normalization, tuned for
character-level tasks (Wu et al. 2020). The hyper-
parameter grid, tuning procedures, and beam size
are the same as for the LSTM model above, except
that learning rate is decayed on an inverse square-
root schedule after a 1,000-update linear warm-up
period. While most participants chose to compare
their results to the transformer and not the LSTM
in system description papers, the transformer was
outperformed by the LSTM baseline in most set-
ting with the hyperparameter exploration budget.

6 System descriptions

Below we provide brief descriptions of submis-
sions to the shared task.

CLUZH The Institute of Computational Lin-
guistics at the University of Zurich submitted a sin-
gle system (Makarov and Clematide 2020) extend-
ing earlier work (Makarov and Clematide 2018)
on imitation learning-based transducers that out-
put a sequence of edit actions rather than a target
string itself. To adapt to the G2P task, where input
(grapheme) and output (phone) vocabularies are
largely disjoint, they add a substitution action. The
costs of each edit action are drawn from a weighted



finite state transducer (WFST). The authors sug-
gest that external lexical information such as part
of speech, etymology (borrowing particularly) and
morphological segmentation would improve sys-
tems. During preprocessing, they decompose Ko-
rean hangul characters into their constituent jamo,
each corresponding roughly to a single phoneme.

CU One team from the University of Colorado
Boulder (Prabhu and Kann 2020) ensembled sev-
eral transformer models created with different ran-
dom seeds using majority voting. They also exper-
iment with a form of multi-task learning: they train
a “bidirectional” model to do both grapheme-to-
phoneme and phoneme-to-grapheme prediction.

CUZ A second team from the University of
Colorado Boulder (Ryan and Hulden 2020) uses
a “slice-and-shuffle” data augmentation strategy.
First, they perform character-level one-to-one
alignment between graphemes and phonemes.
Then they concatenate frequent subsequence pairs
to each other to create nonce training examples.
Their submission is an LSTM model with a bidi-
rectional encoder trained on this augmented data.
While they also developed transformer models,
these did not finish training in time for submission.
Results for their transformer system, not reported
here, are included in their system description.

DeepSPIN Researchers at the Instituto Superior
Técnico and Unbabel produced four submissions
(Peters and Martins 2020) based on sparse at-
tention models. Each submission consists of a
single multilingual neural model in which sepa-
rate learned “language embeddings” are concate-
nated to all encoder and decoder states, rather
than prepending a language-identification token
to the input sequence. Their submissions either
use LSTM- or transformer-based encoder-decoder
sequence-to-sequence models with different val-
ues of a hyperparameter enforcing sparsity in the
final layer (Peters et al. 2019). Like CLUZH, they
preprocess Korean hangul characters, decompos-
ing them into constituent jamo, each correspond-
ing roughly to a single phoneme.

IMS A single submission from the Institut fiir
Maschinelle Sprachverarbeitung at the University
of Stuttgart (Yu et al. 2020) uses self-training
(Yarowsky 1995) and ensembles of the baseline
models. The components of the ensemble are
selected using a genetic algorithm. They report

44

that their data augmentation does not affect per-
formance substantially, except in a simulated low-
resource setting with 200 training examples. They
romanize Japanese and Korean texts as a prepro-
cessing step, and they use external word frequency
lists.

NSU The Novosibirsk State University team did
not provide a system description.

UA The submissions from the University of Al-
berta (Hauer et al. 2020) either use a non-neural
discriminative string transduction model (DTLM;
Nicolai et al. 2018), or tranformers. They lever-
age both grapheme-to-phoneme and phoneme-to-
grapheme models to filter candidates for data aug-
mentation, enforcing a cyclic consistency con-
straint. They further show strong performance in
a simulated low-resource scenario with 100 train-
ing examples. They note that the DTLM system
is much faster to train than transformer models.
Their six submissions vary the amount of train-
ing data and use either DTLM, a transformer, or
a transformer with data augmentation.

UBCNLP The University of British Columbia
submitted two systems (Vesik et al. 2020). One
is a multilingual model akin to Peters et al.
(2017), in which a language-identification token
is prepended to the input sequence. They also en-
semble multiple checkpoints. Their second sub-
mission adds self-training on Wikipedia text; they
report that this data augmentation strategy does not
improve scores.

UZH For all three of their submissions, the team
from the Department of Informatics at the Univer-
sity of Zurich (ElSaadany and Suter 2020) used
a single set of encoder-decoder parameters shared
across all languages. UZH-1 is a large transformer
model with large embedding, hidden layers, and
batches, with a high dropout probability. UZH-
2 augments this model with WikiPron data for
six other languages. UZH-3 is an ensemble of
the previous two models which selects from the
predictions of the two component models using
whichever model’s prediction has a higher poste-
rior probability. The ensemble outperformed the
component models for most languages. During
preprocessing they also decompose Korean hangul
characters into their constituent jamo; they report
this results in a 46% relative word error reduction.



7 Results

‘We now review baseline and submission results.

7.1 Baseline results

Baseline results are shown in Table 2. The
encoder-decoder LSTM (Lee et al. 2020) per-
formed best for nine out of fifteen languages; the
transformer was the strongest for four languages,
and for the remaining two—Modern Greek and
Hungarian—there was a virtual tie between the
two neural network baselines. The pair n-gram
model was outperformed by the neural baselines
on all languages, and by 10 or more points WER
in Bulgarian, Georgian, and Korean. This suggest
that this model is no longer competitive with pow-
erful discriminative neural methods, at least in this
medium-resource G2P task.

While this task was not designed explicitly
to compare LSTM and transformer sequence-to-
sequence models, it does suggest an advantage for
LSTM models. However, we speculate that ad-
ditional training data, or a more generous hyper-
parameter tuning budget, might favor transformer
models. Indeed, anticipating the results below, the
one team that directly compared transformer and
LSTM systems, DeepSPIN, achieved the third best
submission overall using a transformer.

We also note that for four languages, the base-
line system that achieves the best WER does not
achieve the best PER, though the two metrics pro-
duce the same one-best ranking for the remaining
eleven languages.

7.2 Submission results

Table 3 shows, for each language, the system or
systems that achieved the best WER, as well as
the best baseline WER. For all fifteen languages, at
least one team outperformed the baselines, some-
times quite substantially. Six of the nine teams
achieved the best WER on at least one language.
More detailed per-language, per-submission re-
sults are available online.?

Table 4 gives the macro-averaged WER and
PER for the three baselines, and for the best over-
all submission from each team. As expected, the
strongest baseline is the LSTM model. Across all
submissions, the IMS team achieves both the low-
est average WER, a 3% absolute (18% relative)

*https://docs.google.com/spreadsheets/d/
1g0HyGeVzFrNt2pvNuu8L1voFFQY-0CwjTxGA3VXXNGI/
edit?usp=sharing
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word error reduction over the LSTM baseline, and
the lowest overall PER, a 1% absolute (31% rela-
tive) phone error reduction over the LSTM base-
line. The CLUZH and DeepSPIN-3 submissions
achieve second and third place, respectively; the
CU, UCBNLP, and UZH teams also submitted sys-
tems that outperform the LSTM baseline’s WER.

8 Discussion

When this task was initially proposed, there was
some concern that the submissions—if not the
baselines themselves—would easily achieve per-
fect or near-perfect performance on some lan-
guages. This was not the case. Even on the “easi-
est” language, the best submission has .89% WER,
and for three languages, no submission achieves
an error rate below 20%.

At the same time, we observe a large range of er-
ror rates across languages. It is tempting to spec-
ulate that word and/or phone error rates actually
represent differences in difficulty. Insofar as this
is correct, we can begin to ask what makes a lan-
guage “hard to pronounce”, much like how Mielke
et al. (2019) ask what makes a language “hard to
language-model”.

One thing that may make a language hard to
pronounce is data sparsity. Consider the case of
Korean, which has by far the highest baseline er-
ror rate of all fifteen languages. Three features
of Korean and of hangul conspire to make this
task particularly challenging. First, hangul is a syl-
labary, and therefore necessarily has a much larger
graphemic inventory than an alphabet or alphasyl-
labary. A whopping 889 unique hangul charac-
ters appear across the 4,500 words used for this
task.* Secondly, hangul is a relatively deep or ab-
stract orthography (in the sense of Rogers 2005);
it operates at a roughly-morphophonemic level
whereas Lithuanian and Hungarian, for example,
are is roughly phonemic. Third, Korean has many
phonological processes that operate across sylla-
ble boundaries. Since the effect of these processes
is not indicated by the highly abstract, morpho-
phonemic orthography, they can only be learned
by observing the targeted syllable bigrams dur-
ing training. Lee et al. (2020) perform a man-
ual error analysis of a Korean G2P system similar

*Few syllabaries are so large. For instance, there are only
79 unique hiragana symbols in the Japanese data, but this rel-
ative size difference is not surprising given that Korean has a
more permissive syllable structure than Japanese.



Pair n-gram LSTM Transformer

WER PER WER PER WER  PER
arm 18.00 390 1467 349 1422 329
bul 4133  9.05 3111 594 3400 7.89
fre 1356  3.12 622 132 689 1.72
geo 3778 648 2644 5.14 2800 543
gre 21.78 405 1889 3.30 18.89 3.06
hin 1267 2.82 6.67 147 956 240
hun 6.67 151 533 118 533 128
ice 1756  3.62 10.00 236 1022 221
kor 5222 15.88 46.89 16.78 43.78 17.50
lit 23.11 443 19.11 355 20.67  3.65
ady 3200 7.6 2800 6.53 2844 649
dut 2378 397 1644 294 15.78 2.89
jap 956 207 756 1.79 733 1.86
rum 11.56  3.55 1067 253 1200 2.62
vie 844 1.79 4.67 152 7.56 227

Table 2: Results for the three baseline systems.

to the LSTM baseline and observe errors caused
by underapplication of these coda-onset cluster
rules. It is unsurprising then that several submis-
sions achieved substantial gains by either roman-
izing hangul or decomposing it into its constituent
jamo during preprocessing, since both techniques
reduce the size of the input vocabulary.

The results suggest that G2P technologies are
not yet language-agnostic (in the sense of Ben-
der 2009). However, some caution is in order
here: inter-language differences in word error rate
may also reflect inconsistencies in the WikiPron
data itself. During the task, participants reported
apparent transcription inconsistencies in the Bul-
garian, Georgian, and Lithuanian Wiktionary data.
If these inconsistencies are due to overly-narrow
allophonic transcriptions, one might suspect that
they can be learned by sufficiently sophisticated
sequence-to-sequence models. However, if they
represent free variation, inconsistent application
of the transcription guidelines, or even typograph-
ical errors, they inflate error rates and increase the
risk of overfitting. In response to this, we have
begun development of quality assurance software
for WikiPron, including a phone-based whitelist-
ing approach. We anticipate that manual er-
ror analysis will reveal errors in the Wiktionary
data, similar to the large number of test data er-
rors identified by Gorman et al. (2019) for the
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2017 CoNLL-SIGMORPHON morphological in-
flection task. To encourage this sort of error analy-
sis, for the first time in the history of the SIGMOR-
PHON workshop, we publicly release the predic-
tions made by all 23 submissions.> Finally, we
plan to apply large-scale consistency-enforcing ed-
its upstream, i.e., to Wiktionary itself.

While the baselines are somewhat naive and
lack the sophisticated data augmentation and en-
sembling techniques used by the top submissions,
we were pleasantly surprised by the substantial
reductions in error achieved by the participating
teams. As mentioned above, the best submis-
sions handily outperforms the baselines for all lan-
guages. Interestingly, this is true for the most
challenging languages—like Korean, where the
best submission achieves a 45% relative word er-
ror reduction over the baseline—but also for Viet-
namese, the language with the lowest baseline
WER; there, the best submission achieves an im-
pressive 81% relative word error reduction.

As mentioned above, top submissions make
use of techniques such as preprocessing, data
augmentation, ensembling, multi-task learning
(e.g., phoneme-to-grapheme conversion), and self-
training. These techniques are commonly used
in shared tasks and are essentially task-agnostic.

“https://drive.google.com/drive/folders/
IkdawyeIl17iGCOj1Y_2dZQpK75hpShY_H?usp=sharing



Best baseline

Best submission

arm 1422 transformer 1222 CLUZH
bul 31.11 LSTM 2222 IMS
fre 622 LSTM 5.11 DeepSPIN-3
geo 2644 LSTM 2489 IMS
gre 18.89 LSTM, transformer 1444 CU-2,CUZ
hin 6.67 LSTM 511 CLUZH,IMS
hun 5.33 LSTM, transformer 400 CLUZH
ice 1000 LSTM 9.11 CLUZH, UBCNLP-2
kor 43.78 transformer 24.00 DeepSPIN-1, DeepSPIN-2
lit 19.11 LSTM 18.67 CLUZH
ady 2800 LSTM 24.67 DeepSPIN-4
dut 16.44 transformer 13.56 IMS
jap 7.33  transformer 4.89 DeepSPIN-4
rum 10.67 LSTM 9.78 DeepSPIN-3
vie 4.67 LSTM 0.89 DeepSPIN-2
Table 3: The best baseline(s) and submission(s) WERs for each language.
WER PER of unsupervised tokenization techniques such as
) byte-pair encoding (Schuster and Nakajima 2012).
Pair n-gram 2200 492 Finally, we note that several participants ex-
LSTM 1684 399 y . partictpa
pressed interest in a low-resource version of
Transformer 1751 4.30 this challenge, and two teams simulated a low-
resource setting. We leave the design of a low-
CLUZH 1413 282
resource task for future work.
CU-1 1452 324
Cuz 2087 523 9 (Conclusion
DeepSPIN-3 14.15 292
IMS 1381 276 SIGMORPHON, under whose auspices this task
NSU-1 6356 2076 was conducted, was once known as SIGPHON
UA-2 17.47 426 and was primarily focused on computational pho-
UBCNLP-1 1499 330 netics and phonology.  The shared task on
UZH-3 1634 327 multilingual grapheme-to-phoneme conversion, a

Table 4: Macro-averaged results for the baselines and
the best submission from each team.

However, we were surprised that few teams
made use of task-specific resources such as the
PHOIBLE phonemic inventories and feature spec-
ifications (Moran and McCloy 2019) or rule-based
G2P systems like Epitran (Mortensen et al. 2018).
Nor do any of the submissions make use of
morphological analyzers or lexicons, which were
found to be helpful in earlier work (e.g., Coker
et al. 1990, Demberg et al. 2007). We speculate
that such resources might further improve perfor-
mance. Finally we note that submissions make use
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uniquely phonological problem, thus represents
something of a return to the roots of this special
interest group. In this task, nine teams submitted
23 G2P systems for fifteen languages and achieved
substantial improvements over the provided base-
lines. The results suggest many directions for im-
proving G2P systems and the pronunciation dictio-
naries used to train them.
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Abstract

In this paper, we describe the findings of the
SIGMORPHON 2020 shared task on unsu-
pervised morphological paradigm completion
(SIGMORPHON 2020 Task 2), a novel task
in the field of inflectional morphology. Partici-
pants were asked to submit systems which take
raw text and a list of lemmas as input, and out-
put all inflected forms, i.e., the entire morpho-
logical paradigm, of each lemma. In order to
simulate a realistic use case, we first released
data for 5 development languages. However,
systems were officially evaluated on 9 surprise
languages, which were only revealed a few
days before the submission deadline. We pro-
vided a modular baseline system, which is a
pipeline of 4 components. 3 teams submitted
a total of 7 systems, but, surprisingly, none
of the submitted systems was able to improve
over the baseline on average over all 9 test lan-
guages. Only on 3 languages did a submitted
system obtain the best results. This shows that
unsupervised morphological paradigm com-
pletion is still largely unsolved. We present
an analysis here, so that this shared task will
ground further research on the topic.

1 Introduction

In morphologically rich languages, words inflect:
grammatical information like person, number,
tense, and case are incorporated into the word it-
self, rather than expressed via function words. Not
all languages mark the same properties: German
nouns, for instance, have more inflected forms than
their English counterparts.

When acquiring a language, humans usually
learn to inflect words without explicit instruction.
Thus, most native speakers are capable of gen-
erating inflected forms even of artificial lemmas
(Berko, 1958). However, models that can gener-
ate paradigms without explicit morphological train-

*Equal contribution.
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Figure 1: The task of unsupervised morphological
paradigm completion (Jin et al., 2020) consists of gen-
erating complete inflectional paradigms for given lem-
mas, with the only additional available information be-
ing a corpus without annotations.

ing have not yet been developed. We anticipate
that such systems will be extremely useful, as they
will open the possibility of rapid development of
first-pass inflectional paradigms in a large set of
languages. These can be utilized both in se for
generation and as a starting point for elicitation
(Sylak-Glassman et al., 2016), thus aiding the de-
velopment of low-resource human language tech-
nologies (Christianson et al., 2018).

In this paper, we present the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2). We asked participants to produce systems that
can learn to inflect in an unsupervised fashion:
given a small corpus (the Bible) together with a
list of lemmas for each language, systems for the
shared task should output all corresponding in-
flected forms. In their output, systems had to mark
which forms expressed the same morphosyntactic
features, e.g., demonstrate knowledge of the fact
that walks is to walk as listens is to listen, despite
not recognizing the morphological features explic-
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itly. We show a visualization of our shared task
setup in Figure 1.

Unsupervised morphological paradigm comple-
tion requires solving multiple subproblems either
explicitly or implicitly. First, a system needs to
figure out which words in the corpus belong to the
same paradigm. This can, for instance, be done
via string similarity: walks is similar to walk, but
less so to listen. Second, it needs to figure out
the shape of the paradigm. This requires detecting
which forms of different lemmas express the same
morphosyntactic features, even if they are not con-
structed from their respective lemmas in the exact
same way. Third, a system needs to generate all
forms not attested in the provided corpus. Using
the collected inflected forms as training data, this
can be reduced to the supervised morphological
inflection task (Cotterell et al., 2016).

This year’s submitted systems can be split
into two categories: those that built on the
baseline (Retrieval+X) and those that did not
(Segment+Conquer). The baseline system is set
up as a pipeline which performs the following
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). As it is highly modular, we pro-
vided two versions that employ different inflection
models.! All systems built on the baseline substi-
tuted the morphological inflection component.

No system outperformed the baseline overall.
However, two Retrieval+X models slightly im-
proved over the baseline on three individual lan-
guages. We conclude that the task of unsupervised
morphological paradigm completion is still an open
challenge, and we hope that this shared task will
inspire future research in this area.

2 Task and Evaluation

2.1 Unsupervised Morphological Paradigm
Completion

Informal description. The task of unsupervised
morphological paradigm completion mimics a set-
ting where the only resources available in a lan-
guage are a corpus and a short list of dictionary
forms, i.e., lemmas. The latter could, for instance,
be obtained via basic word-to-word translation.
The goal is to generate all inflected forms of the
given lemmas.

'In this report, we use the words baseline and baselines
interchangeably.
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For an English example, assume the following
lemma list to be given:

walk

listen

With the help of raw text, systems should then
produce an output like this:

walk walk 1
walk walks 2
walk walked 3
walk walking 4
walk walked 5

listen listens 2

ey

listen listened 5
listen listened 3
listen listening 4

listen listen 1

The numbers serve as unique identifiers for
paradigm slots: in above example, ’4” corresponds
to the present participle. The inflections walking
and ralking therefore belong to the same paradigm
slot. For the task, participants are not provided any
knowledge of the grammatical content of the slots.

Formal definition.
of a lemma ¢ as

We denote the paradigm 7(¢)

—

<f(£7 t'y)>'y€F(£) ’

with f : ¥* x T — X* being a function that
maps a lemma and a vector of morphological fea-
tures t_; € T expressed by paradigm slot y to the
corresponding inflected form. I'(¢) is the set of
slots in lemma ¢’s paradigm.

We then formally describe the task of unsuper-
vised morphological paradigm completion as fol-
lows. Given a corpus D = wy, ..., w)p| together
with a list £ = {¢;} of |£| lemmas belonging to
the same part of speech,? unsupervised morpho-
logical paradigm completion consists of generating
the paradigms {7 (¢)} of all lemmas ¢ € L.

m(f) 2)

Remarks. It is impossible for unsupervised sys-
tems to predict the names of the features expressed
by paradigm slots, an arbitrary decision made by
human annotators. This is why, for the shared task,

This edition of the shared task was only concerned with

verbs, though we are considering extending the task to other
parts of speech in the future.



we asked systems to mark which forms belong to
the same slot by numbering them, e.g., to predict
that walked is the form for slot 3, while listens
corresponds to slot 2.

2.2 Macro-averaged Best-Match Accuracy

The official evaluation metric was macro-averaged
best-match accuracy (BMAcc; Jin et al., 2020).

In contrast to supervised morphological inflec-
tion (Cotterell et al., 2016), our task cannot be
evaluated with word-level accuracy. For the former,
one can compare the prediction for each lemma and
morphological feature vector to the ground truth.
However, for unsupervised paradigm completion,
this requires a mapping from predicted slots to the
gold standard’s paradigm slots.

BMAcc, thus, first computes the word-level ac-
curacy each predicted slot would obtain against
each true slot. It then constructs a complete bipar-
tite graph, with those accuracies as edge weights.
This enables computing of the maximum-weight
full matching with the algorithm of Karp (1980).
BMAcc then corresponds to the sum of all accura-
cies for the best matching, divided by the maximum
of the number of gold and predicted slots.

BMAcc penalizes systems for predicting a
wrong number of paradigm slots. However, detect-
ing the correct number of identical slots — some-
thing we encounter in some languages due to syn-
cretism — is extremely challenging. Thus, we merge
slots with identical forms for all lemmas in both the
predictions and the ground truth before evaluating.

Example. Assume our gold standard is (1) (the
complete, 5-slot English paradigms for the verbs
walk and listen) and a system outputs the following,
including an error in the fourth row:

walk walks 1
walk walking 2
listen listens 1

listen listenen 2

First, we merge slots 3 and 5 in the gold standard,
since they are identical for both lemmas. Ignoring
slot 5, we then compute the BMAcc as follows.
Slot 1 yields an accuracy of 100% as compared to
gold slot 2, and 0% otherwise. Similarly, slot 2
reaches an accuracy of 50% for gold slot 4, and 0%
otherwise. Additionally, given the best mapping of
those two slots, we obtain 0% accuracy for gold
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slots 1 and 3. Thus, the BMAcc is
~1+05+0+0
N 4

3 Shared Task Data

BMAcc =0.375

3)

3.1 Provided Resources

We provided data for 5 development and 9 test lan-
guages. The development languages were available
for system development and hyperparameter tun-
ing, while the test languages were released shortly
before the shared task deadline. For the test lan-
guages, no ground truth data was available before
system submission. This setup emulated a real-
world scenario with the goal to create a system for
languages about which we have no information.

For the raw text corpora, we leveraged the JHU
Bible Corpus (McCarthy et al., 2020). This re-
source covers 1600 languages, which will enable
future work to quickly produce systems for a large
set of languages. Additionally, using the Bible
allowed for a fair comparison of models across lan-
guages without potential confounds such as domain
mismatch. 7 of the languages have only the New
Testament available (approximately 8k sentences),
and 7 have both the New and Old Testaments (ap-
proximately 31k sentences).

All morphological information was taken from
UniMorph (Sylak-Glassman et al., 2015; Kirov
et al., 2018), a resource which contains paradigms
for more than 100 languages. However, this infor-
mation was only accessible to the participants for
the development languages. UniMorph paradigms
were further used internally for evaluation on the
test languages—this data was then released after
the conclusion of the shared task.

3.2 Languages

During the development phase of the shared task,
we released 5 languages to allow participants to in-
vestigate various design decisions: Maltese (MLT),
Persian (FAS), Portuguese (POR), Russian (RUS),
and Swedish (SWE). These languages are typologi-
cally and genetically varied, representing a number
of verbal inflectional phenomena. Swedish and Por-
tuguese are typical of Western European languages,
and mostly exhibit fusional, suffixing verbal inflec-
tion. Russian, as an exemplar of Slavic languages,
is still mostly suffixing, but does observe regu-
lar ablaut, and has considerable phonologically-
conditioned allomorphy. Maltese is a Semitic lan-
guage with a heavy Romance influence, and verbs



| | MLT FAS POR RUS SWE
1 | # Tokens in corpus 193257 227584 828861 727630 871707
2 | # Types in corpus 16017 11877 31446 46202 25913
3 | # Lemmas 20 100 100 100 100
4 | # Lemmas in corpus 10 22 50 50 50
5 | # Inflections 640 13600 7600 1600 1100
6 | # Inflections in corpus 252 545 1037 306 276
7 | Paradigm size 16 136 76 16 11
8 | Paradigm size (merged) 15 132 59 16 11

Table 1: Dataset statistics: development languages. # Inflections=number of inflected forms in the gold file,
token-based; # Inflections in corpus=number of inflections from the gold file which can be found in the corpus,
token-based; Paradigm size=number of different morphological feature vectors in the dataset for the language;
Paradigm size (merged)=paradigm size, but counting slots with all forms being identical only once.

| | EUS BUL ENG FIN DEU KAN NAV SPA TUR
1 | # Tokens in corpus 195459 801657 236465 685699 826119 193213 104631 251581 616418
2 | # Types in corpus 18367 37048 7144 54635 22584 28561 18799 9755 59458
3 | #Lemmas 20 100 100 100 100 20 100 100 100
4 | # Lemmas in corpus 4 50 50 50 50 10 9 50 50
5 | # Inflections 10446 5600 500 14100 2900 2612 3000 7000 12000
6 | # Inflections in corpus 97 915 127 497 631 1040 54 630 986
7 | Paradigm size 1659 56 5 141 29 85 30 70 120
8 | Paradigm size (merged) 1658 54 5 141 20 59 30 70 120

Table 2: Dataset statistics: test languages. # Inflections=number of inflected forms in the gold file, token-based;
# Inflections in corpus=number of inflections from the gold file which can be found in the corpus, token-based;
Paradigm size=number of different morphological feature vectors in the dataset for the language; Paradigm size
(merged)=paradigm size, but counting slots with all forms being identical only once.

combine templatic and suffixing inflection. Per-
sian is mostly suffixing, but does allow for verbal
inflectional prefixation, such as negation and mark-
ing subjunctive mood. Since the development lan-
guages were used for system tuning, their scores
did not count towards the final ranking.

After a suitable period for system develop-
ment and tuning, we released nine test languages:
Basque (EUS), Bulgarian (BUL), English (ENG),
Finnish (FIN), German (DEU), Kannada (KAN),
Navajo (NAV), Spanish (SPA), and Turkish (TUR).
Although these languages observe many features
common to the development languages, such as fu-
sional inflection, suffixation, and ablaut, they also
cover inflectional categories absent in the develop-
ment languages. Navajo, unlike any of the devel-
opment languages, is strongly prefixing. Basque,
Finnish, and Turkish are largely agglutinative, with
long, complex affix chains that are difficult to iden-
tify through longest suffix matching. Furthermore,
Finnish and Turkish feature vowel harmony and
consonant gradation, which both require a method
to identify allomorphs correctly to be able to merge
different variants of the same paradigm slot.
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3.3 Statistics

Statistics of the resources provided for all lan-
guages are shown in Table 1 for the development
languages and in Table 2 for the test languages.

The token count (line 1) and, thus, the size of the
provided Bible corpora, differs between 104,631
(Kannada) and 871,707 (Swedish). This number
depends both on the typology of a language and
on the completeness of the provided Bible trans-
lation. The number of types (line 2) is between
7,144 (English) and 59,458 (Turkish). It is strongly
influenced by how morphologically rich a language
is, i.e., how large the paradigms are, which is of-
ten approximated with the rype—token ratio. The
verbal paradigm size is listed in line 7: English
has with a size of 5 the smallest paradigms, and,
correspondingly, the lowest type count. Turkish,
which has the highest number of types, in contrast,
has large paradigms (120). The last line serves as
an indicator of syncretism: subtracting line 8 from
line 7 results in the number of paradigm slots that
have been merged as a language evolved to use
identical forms for different inflectional categories.

Lines 3 and 4 show the number of lemmas in
the lemma lists for all languages, as well as the



Institution Systems Rank Description Paper

KU-CST KU-CST-1 7 Agirrezabal and Wedekind (2020)
KU-CST KU-CST-2 6 Agirrezabal and Wedekind (2020)
IMS-CUBoulder IMS-CUBoulder-1 5 Mager and Kann (2020)
IMS-CUBoulder IMS-CUBoulder-2 1 Mager and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-1 4 Singer and Kann (2020)
NYU-CUBoulder NYU-CUBoulder-2 2 Singer and Kann (2020)
NYU-CUBoulder =~ NYU-CUBoulder-3 3 Singer and Kann (2020)

Table 3: All submitted systems by institution, together with a reference to their description paper. The rank is
relative to all other submitted systems and does not take the baselines into account.
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Figure 2: Our baseline system: the retrieval component bootstraps lemma—form-slot triplets, which are then used
by the generation component to generate unobserved inflections in the paradigm of each input lemma.

number of lemmas which can be found in the cor-
pus. For the majority of languages, 100 lemmas
are provided, out of which 50 appear in the Bible.
Exceptions are Maltese (20, 10), Persian (100, 22),
Basque (20, 4), Kannada (20, 10), and Navajo (100,
9). These are due to limited UniMorph coverage.

In line 5, we list the number of total inflections,
counting each one in the case of identical forms,
i.e., this corresponds to the number of lines in our
gold inflection file. English, due to its small verbal
paradigm size, has only 500 inflections in our data.
Conversely, Finnish has with 14,100 the largest
number of inflections. Line 6 describes how many
of the forms from line 5 appear in the corpus. As
before, all forms are counted, even if they are iden-
tical. For all languages, a large majority of forms
cannot be found in the corpus. This makes the task
of unsupervised morphological paradigm comple-
tion with our provided data a challenging one.

4 Systems

In this section, we first review the baseline before
describing the submitted systems. An additional
overview of the submissions is shown in Table 3.
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4.1 Baseline

We compared all submissions to the baseline sys-
tem of Jin et al. (2020), graphically summarized
in Figure 2. It is a pipeline system, which con-
sists of 4 separate modules, which, in turn, can be
grouped into two major components: retrieval and
generation. The retrieval component discovers and
returns inflected forms — and, less importantly, ad-
ditional lemmas — from the provided Bible corpus.
The generation component produces new inflected
forms which cannot be found in the raw text.

The retrieval component performs three steps:
First, it extracts the most common edit trees
(Chrupata, 2008), i.e., it detects regularities with
regards to word formation, based on the lemma
list. If, for instance, both walk and listen are the
lemmas provided and both walked and listened are
encountered in the corpus, the system notes that
appending -ed is a common transformation, which
might correspond to an inflectional strategy.

Second, it retrieves new lemmas, with the goal
to gather additional evidence for our collected edit
trees. If, for instance, it has already identified the
suffix -ed as an inflectional marker, finding both
pray and prayed in the Bible is an indication that
pray might be a lemma. New lemmas can then, in
turn, be used to detect new regularities, e.g., in the



case that listen and listens as well as pray and prays
are attested in the corpus, but walks is not. Due to
their complementary nature, components one and
two can, as a unit, be applied iteratively to bootstrap
a larger list of lemmas and transformations. For the
baseline, we apply each of them only once.

Finally, the baseline’s retrieval component pre-
dicts the paradigm size by analyzing which edit
trees might be representing the same inflection. For
instance, the suffixes -d and -ed both represent the
past tense in English. The output of the retrieval
component is a list of inflected forms with their
lemmas, annotated with a paradigm slot number.

The generation component receives this out-
put and prepares the data to train an inflectional
generator. First, identified inflections are divided
into a training and development split, and miss-
ing paradigm slots are identified. The generator
is trained on the discovered inflections, and new
forms are predicted for each missing slot.

We used two morphological inflection systems
for the two variants of our baseline: the non-neural
baseline from Cotterell et al. (2017) and the model
proposed by Makarov and Clematide (2018). Both
are highly suitable for the low-resource setting.

4.2 Submitted Systems: Retrieval+X

We now describe the first category of shared task
submissions: Retrieval+X. Systems in this cate-
gory leverage the retrieval component of the base-
line, while substituting the morphological inflec-
tion component with a custom inflection system.

The IMS-CUBoulder team relied on LSTM
(Hochreiter and Schmidhuber, 1997) sequence-to-
sequence models for inflection. In IMS-CUB-1, the
generation component is based on the architecture
by Bahdanau et al. (2015), but with fewer param-
eters, as suggested by Kann and Schiitze (2016).
This model — as well as all other inflection compo-
nents used for systems in this category — receives
the sequence of the lemma’s characters and the
paradigm slot number as input and produces a se-
quence of output characters.

Their second system, IMS-CUB-2, uses an
LSTM pointer-generator network (See et al., 2017)
instead. This architecture has originally been pro-
posed for low-resource morphological inflection by
Sharma et al. (2018).

The NYU-CUBoulder team also substituted
the baseline’s generation component. Their mor-
phological inflection models are ensembles of dif-
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ferent combinations of transformer sequence-to-
sequence models (Vaswani et al., 2017) and pointer-
generator transformers, a model they introduced
for the task.

NYU-CUB-1 is an ensemble of 6 pointer-
generator transformers, while NYU-CUB-2 is an en-
semble of 6 vanilla transformers. Their last system,
NYU-CUB-3, is an ensemble of all 12 models.

4.3 Submitted Systems: Segment+Conquer

The KU-CST team did not modify the baseline
directly, but, nevertheless, was heavily inspired
by it. Their system first employs a character-
segmentation algorithm to identify stem—suffix
splits in both the provided lemma list and the cor-
pus, thus identifying potential suffix-replacement
rules. Next, k-means is used to cluster the extracted
suffixes into allomorphic groups. These suffixes
are then concatenated with the most frequent stems
obtained from the lemma list, and scored by a lan-
guage model, in order to arrive at plausible inflec-
tional candidates. This approach is KU-CST-2.

However, KU-CST-2 often produces very small
inflectional paradigms; unsurprisingly, given that
the provided corpora are small as well, and, thus,
any particular lemma is only inflected in limited
ways — if at all. Therefore, KU-CST-1 expands the
lemma list with a logistic-regression classifier that
identifies novel verbs to be added.

5 Results and Analysis

5.1 Results on Development Languages

To encourage reproducibility, we first report the
performance of all systems on the development
languages in the upper part of Table 4. Although
participants were not evaluated on these languages,
the results provide insight and enable future re-
searchers to benchmark their progress, while main-
taining the held-out status of the test languages.

5.2 Official Shared Task Results

We show the official test results in the lower part of
Table 4. Baseline-2 obtained the highest BMAcc
on average, followed in order by Baseline-1,
IMS-CUB-2, and NU-CUB-2. Overall, systems
built on top of the baseline, i.e., systems from Re-
trieval+X, performed better than systems from Seg-
ment+Conquer: the best Segment+Conquer sys-
tem only reached 4.66% BMAcc on average. This
shows the effectiveness of the baseline. However,
it also shows that we still have substantial room



Baseline KU-CST IMS-CUB NYU-CUB

1 2 1 2 1 2 1 2 3
MLT || 9.12 (17) 20.00 (17)[0.22 (254) 1.30 (2)|14.41 (17) 17.35 (17)|15.29 (17) 15.59 (17) 15.88 (17)
FAS || 6.67 (31) 654 (31)|1.55 (11) 0.74 (2)| 2.52 (31) 270 (31| 2.76 (31) 2.73 (@31) 2.74 (31)
POR ||40.39 (34) 39.56 (34)[1.09(1104) 12.75 (70)|38.69 (34) 39.17 (34)|39.93 (34) 39.95 (34) 40.07 (34)
RUS [|40.68 (19) 41.68 (19)|0.35 (387) 7.06 (10)|38.63 (19) 41.11 (19)|39.26 (19) 40.00 (19) 39.74 (19)
SWE |[|45.07 (15) 40.93 (15)|0.93 (588) 22.82 (17)|37.60 (15) 39.93 (15)|39.80 (15) 39.93 (15) 40.13 (15)
avg. H28.39 29.74 \0.83 8.93 \26.37 28.05 \27.41 27.64 27.71
EUS || 0.06 (30) 0.06 (27)[0.02 (30) 0.01 (2)| 0.04 (30) 0.06 (30)| 0.05 (30) 0.05 (30) 0.07 (30
BUL ||28.30 (35) 31.69 (34)(2.99 (138) 4.15 (13)(27.22 (35) 32.11 (35)|27.69 (35) 28.94 (35) 27.89 (35)
ENG||65.60 (4) 66.20 (4)(3.53 (51) 17.29 (7)|47.80 (4) 61.00 (4)|50.20 (4) 52.80 (4) 51.20 &)
FIN 5.33 (21) 5.50 (21)[0.39(1169) 2.08 (108)| 4.90 (21) 5.38 (21)] 536 (21) 547 (1) 535 (21)
DEU ||28.35 (9) 29.00 (9)|0.70 (425) 4.98 (40)|24.60 (9) 28.35 (9)|27.30 (9) 2735 (9) 2735 (9)
KAN|[15.49 (172) 15.12 (172)|4.27 (44) 1.69 (1)[10.50 (172) 15.65 (172)|11.10 (172) 11.16 (172) 11.10 (172)
NAV || 323 (3) 327 (3)0.13 (38 020 (2) 033 ((3) 1.17 (3) 040 ((3) 043 ((3) 043 (3
SPA (/2296 (29) 23.67 (29)|3.52 (225) 10.84 (40)|19.50 (29) 22.34 (29)|20.39 (29) 20.56 (29) 20.30 (29)
TUR ||14.21 (104) 15.53 (104)|0.11(1772) 0.71 (502)|13.54 (104) 14.73 (104)|14.88 (104) 15.39 (104) 15.13 (104)

avg. [|20.39 21.12 174 4.66

16.49

20.09 |17.49 18.02 17.65

Table 4: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all development (top) and test languages (bottom). Best scores are in bold.

for improvement on unsupervised morphological
paradigm completion.

Looking at individual languages, Baseline-2
performed best for all languages except for EUS,
where NYU-CUB-3 obtained the highest BMAcc,
and BUL and KAN, where IMS-CUB-2 was best.

5.3 Analysis: Seen and Unseen Lemmas

We further look separately at the results for lemmas
which appear in the corpus and those that do not.
While seeing a lemma in context might help some
systems, we additionally assume that inflections of
attested lemmas are also more likely to appear in
the corpus. Thus, we expect the performance for
seen lemmas to be higher on average.

Examining the performance with respect to ob-
served inflected forms might give cleaner results.
However, we instead perform this analysis on a
per-lemma basis, since the lemmas are part of a
system’s input, while the inflected forms are not.

Table 5 shows the performance of all systems
for seen and unseen lemmas. Surprisingly, both
versions of the baseline show similar BMAcc for
both settings with a maximum difference of 0.12%
on average. However, the baseline is the only sys-
tem that performs equally well for unseen lemmas;
IMS-CUB-1 observes the largest difference, with an
absolute drop of 7.85% BMAcc when generating
the paradigms of unseen lemmas. Investigating the
cause for IMS-CUB-1’s low BMAcc, we manually
inspected the English output files, and found that,
for unseen lemmas, many generations are nonsensi-
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cal (e.g., demoates as an inflected form of demodu-
late). This does not happen in the case of seen lem-
mas. A similar effect has been found by Kann and
Schiitze (2018), who concluded that this might be
caused by the LSTM sequence-to-sequence model
not having seen similar character sequences dur-
ing training. The fact that IMS-CUB-2, which uses
another inflection model, performs better for un-
seen lemmas confirms this suspicion. Thus, ad-
ditional training of the inflection component of
IMS-CUB-1 on words from the corpus might im-
prove generation. Conversely, the baseline — which
benefits from inflection models specifically catered
to low-resource settings — is better suited to in-
flecting unseen lemmas. Overall, we conclude that
there is little evidence that the difficulty of the task
increases for unseen lemmas. Rather, inflection
systems need to compensate for the low contextual
variety in their training data.

6 Where from and Where to?
6.1 Previous Work

Prior to this shared task, most research on unsuper-
vised systems for morphology was concerned with
developing approaches to segment words into mor-
phemes, i.e., their smallest meaning-bearing units
(Goldsmith, 2001; Creutz, 2003; Creutz and La-
gus, 2007; Snyder and Barzilay, 2008; Goldwater
et al., 2009; Kurimo et al., 2010; Kudo and Richard-
son, 2018). These methods were built around the
observation that inflectional morphemes are very
common across word types, and leveraged probabil-



Baseline KU-CST IMS-CUB NYU-CUB

1 2 1 2 1 2 1 2 3
EUS || 0.11 (30) 0.11 (19)[0.03 (30) 0.03 (2)| 0.11 (28) 0.19 (30)| 0.11 (30) 0.11 (30) 0.11 (30
BUL [|25.48 (35) 2893 (34)|5.62 (138) 6.33 (13)|27.85 (35) 29.70 (34)|29.30 (35) 29.78 (35) 29.52 (35)
ENG||70.80 (4) 71.20 (4)[3.02 (51) 18.86 (7)|69.60 (4) 7040 (4)|69.20 (4) 70.00 (4) 70.00 (4)
FIN 6.17 (21) 6.38 (21)|0.70(1169) 3.60 (108)| 6.11 (21) 6.65 (21)| 6.55 (21) 6.58 (21) 6.57 (21)
DEU [|26.70  (9) 27.00 (9)|1.14 (425) 8.75 (40)|27.40 (9) 27.30 (9)|27.50 (9) 27.60 (9) 27.40 (9)
KAN|16.35 (171) 15.61 (172)|6.61 (44) 1.69 (1)[13.99 (172) 16.49 (172)|14.63 (172) 14.68 (172) 14.63 (172)
NAV | 296 (3) 296 (3)[1.46 (38) 222 (2)] 296 (3) 296 (3) 296 (3) 296 (3) 296 (3
SPA |[20.97 (29) 21.60 (29)|4.43 (225) 16.37 (40)[20.40 (29) 21.14 (29)|21.17 (29) 21.09 (29) 21.14 (29)
TUR ||14.68 (104) 16.38 (104)|0.23(1772) 1.42 (502)|16.98 (104) 18.02 (104)|18.30 (104) 18.70 (104) 18.50 (104)
avg. H20.47 21.13 \2.58 6.59 \20.60 21.43 \21.08 21.28 21.20
EUS || 0.06 (30) 0.06 (30)[0.03 (30) 0.00 (2)| 0.03 (30) 0.04 (30)| 0.05 (30) 0.05 (30) 0.07 (30
BUL ||31.11 (35) 34.44 (34)[0.83 (138) 2.04 (13)[26.59 (35) 34.52 (35)[26.07 (35) 28.11 (35) 26.26 (35)
ENG||60.40 (4) 61.20 (4)[4.12 (51) 1571  (7)|26.00 (4) 51.60 (4)|31.20 (4) 35.60 (4) 3240 (4
FIN 452 (21) 4.62 (21)[0.12(1169) 0.98 (108)| 3.69 (21) 4.11 (@21)| 4.17 (1) 437 (21) 4.13 (21)
DEU ||30.84 (9) 32.63 (9)|0.55 (425) 3.05 (40)|22.95 (9) 3095 (9)|28.74 (9) 28,63 (9) 2895 (9)
KAN|14.64 (172) 14.55 (172)|1.88 (24) 1.69 (1)| 6.72 (172) 14.72 (172)| 7.27 (172) 7.33 (172) 7.28 (172)
NAV | 326 (3) 330 (3)[0.00 (38) 0.00 (2) 007 @3) 099 (3 015 @3) 018 (@3) 018 (3
SPA [|24.94 (29) 25.74 (29)|3.86 (225) 8.94 (40)|18.60 (29) 23.54 (29)|19.60 (29) 20.03 (29) 19.46 (29)
TUR ||13.73 (104) 14.70 (104)|0.00(1757) 0.00 (500)|10.12 (104) 11.47 (104)|11.48 (104) 12.08 (104) 11.77 (104)
avg. H20.39 21.25 \1.27 3.60 \12.75 19.10 \14.30 15.15 14.50

Table 5: BMAcc in percentages and the number of predicted paradigm slots after merging for all submitted systems
and the baselines on all test languages; listed separately for lemmas which appear in the corpus (top) and lemmas

which do not (bottom). Best scores are in bold.

ity estimates such as maximum likelihood (MLE)
or maximum a posteriori (MAP) estimations to
determine segmentation points, or minimum de-
scription length (MDL)-based approaches. How-
ever, they tended to make assumptions regarding
how morphemes are combined, and worked best
for purely concatenative morphology. Furthermore,
these methods had no productive method of han-
dling allomorphy—morphemic variance was sim-
ply treated as separate morphemes.

The task of wunsupervised morphological
paradigm completion concerns more than just seg-
mentation: besides capturing how morphology is
reflected in the word form, it also requires correctly
clustering transformations into paradigm slots and,
finally, generation of unobserved forms.

While Xu et al. (2018) did discover something
similar to paradigms, those paradigms were a
means to a segmentation end and the shape or
size of the paradigms was not a subject of their
research. Moon et al. (2009) similarly uses seg-
mentation and clustering of affixes to group words
into conflation sets, groups of morphologically re-
lated words, in an unsupervised way. Their work
assumes prefixing and suffixing morphology. In a
more task-driven line of research, Soricut and Och
(2015) develop an approach to learn morphological
transformation rules from observing how consis-
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tently word embeddings change between related
word forms, with the goal of providing useful word
embeddings for unseen words.

Our task further differs from traditional
paradigm completion (e.g., Dreyer and FEisner,
2011; Ahlberg et al., 2015) in that no seed
paradigms are observed. Thus, no information is
being provided regarding the paradigm size, inflec-
tional features, or relationships between lemmas
and inflected forms. Other recent work (Nicolai
and Yarowsky, 2019; Nicolai et al., 2020) learned
fine-grained morphosyntactic tools from the Bible,
though they leveraged supervision projected from
higher-resource languages (Yarowsky et al., 2001;
Téackstrom et al., 2013).

Past shared tasks. This task extends a tradition
of SIGMORPHON shared tasks concentrating on
inflectional morphology.

The first such task (Cotterell et al., 2016) en-
couraged participants to create inflectional tools
in a typologically diverse group of 10 languages.
The task was fully-supervised, requiring systems
to learn inflectional morphology from a large anno-
tated database. This task is similar to human learn-
ers needing to generate inflections of previously
unencountered word forms, after having studied
thousands of other types.

The second task (Cotterell et al., 2017) extended



the first task from 10 to 52 languages and started
to encourage the development of tools for the low-
resource setting. While the first shared task ap-
proximated an adult learner with experience with
thousands of word forms, low-resource inflection
was closer to the language learner that has only
studied a small number of inflections—however,
it was closer to L2 learning than L1, as it still
required training sets with lemma-inflection—slot
triplets. The 2017 edition of the shared task also
introduced a paradigm-completion subtask: partici-
pants were given partially observed paradigms and
asked to generate missing forms, based on com-
plete paradigms observed during training. This
could be described as the supervised version of
our unsupervised task, and notably did not require
participants to identify inflected forms from raw
text—a crucial step in L1 learning.

The third year of the shared task (Cotterell et al.,
2018) saw a further extension to more than 100
languages and another step away from supervised
learning, in the form of a contextual prediction task.
This task stripped away inflectional annotations, re-
quiring participants to generate an inflection solely
utilizing a provided lemma and sentential cues.
This task further imitated language learners, but
extended beyond morphological learning to mor-
phosyntactic incorporation. Furthermore, remov-
ing the requirement of an inflectional feature vector
more closely approximated the generation step in
our task. However, it was still supervised in that
participants were provided with lemma—inflection
pairs in context during training. We, in contrast,
made no assumption of the existence of such pairs.

Finally, the fourth iteration of the task (Mc-
Carthy et al., 2019) again concentrated on less-
supervised inflection. Cross-lingual training al-
lowed low-resource inflectors to leverage informa-
tion from high-resource languages, while a con-
textual analysis task flipped the previous year’s
contextual task on its head—tagging a sentence
with inflectional information. This process is very
similar to the retrieval portion of our task. We ex-
tended this effort to not only identify the paradigm
slot of particular word, but to combine learned in-
formation from each class to extend and complete
existing paradigms. Furthermore, we lifted the
requirement of named inflectional features, more
closely approximating the problem as approached
by L1 language learners.
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6.2 Future Shared Tasks

Future editions of the shared task could extend this
year’s Task 2 to a larger variety of languages or
parts of speech. Another possible direction is to
focus on derivational morphology instead of or in
addition to inflectional morphology. We are also
considering merging Task 2 with the traditional
morphological inflection task: participants could
then choose to work on the overall task or on either
of the retrieval or generation subproblem.

Finally, we are looking into extending the shared
task to use speech data as input. This is closer to
how L1 learners acquire morphological knowledge,
and, while this could make the task harder in some
aspects, it could make it easier in others.

7 Conclusion

We presented the findings of the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion (SIGMORPHON 2020 Task
2), in which participants were asked to generate
paradigms without explicit supervision.

Surprisingly, no team was able to outperform the
provided baseline, a pipeline system, on average
over all test languages. Even though 2 submitted
systems were better on 3 individual languages, this
highlights that the task is still an open challenge for
the NLP community. We argue that it is an impor-
tant one: systems obtaining high performance will
be able to aid the development of human language
technologies for low-resource languages.

All teams that participated in the shared task
devised modular approaches. Thus, it will be easy
to include improved components in the future as,
for instance, systems for morphological inflection
improve. We released all data, the baseline, the
evaluation script, and the system outputs in the
official repository, in the hope that this shared
task will lay the foundation for future research on
unsupervised morphological paradigm completion.

Acknowledgments

First and foremost, we would like to thank all of
our shared task participants. We further thank the
passionate morphologists who joined for lunch in
Florence’s mercato centrale on the last day of ACL
2019 to plan the 2020 shared task, as well as the
SIGMORPHON Exec, who made this shared task
possible.

*https://github.com/sigmorphon/2020/tree/
master/task?2



References

Manex Agirrezabal and Jiirgen Wedekind. 2020. KU-
CST at the SIGMORPHON 2020 task 2 on unsuper-
vised morphological paradigm completion. In Pro-
ceedings of the 17th Workshop on Computational
Research in Phonetics, Phonology, and Morphology.
Association for Computational Linguistics.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 1024-1029, Denver, Col-
orado. Association for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jean Berko. 1958. The child’s learning of english mor-
phology. Word, 14(2-3):150-177.

Caitlin Christianson, Jason Duncan, and Boyan
Onyshkevych. 2018. Overview of the DARPA
LORELEI program. Machine Translation, 32(1):3—
9.

Grzegorz Chrupata. 2008. Towards a machine-
learning architecture for lexical functional grammar
parsing. Ph.D. thesis, Dublin City University.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Arya D.
McCarthy, Katharina Kann, Sebastian Mielke, Gar-
rett Nicolai, Miikka Silfverberg, David Yarowsky,
Jason Eisner, and Mans Hulden. 2018. The CoNLL~
SIGMORPHON 2018 shared task: Universal mor-
phological reinflection. In Proceedings of the
CoNLL-SIGMORPHON 2018 Shared Task: Univer-
sal Morphological Reinflection, pages 1-27, Brus-
sels. Association for Computational Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kiibler, David
Yarowsky, Jason Eisner, and Mans Hulden. 2017.
CoNLL-SIGMORPHON 2017 shared task: Univer-
sal morphological reinflection in 52 languages. In
Proceedings of the CoNLL SIGMORPHON 2017
Shared Task: Universal Morphological Reinflection,
pages 1-30, Vancouver. Association for Computa-
tional Linguistics.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared Task—
Morphological reinflection. In Proceedings of the
14th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphol-
0gy, pages 10-22, Berlin, Germany. Association for
Computational Linguistics.

60

Mathias Creutz. 2003. Unsupervised segmentation of
words using prior distributions of morph length and
frequency. In Proceedings of the 41st Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 280-287, Sapporo, Japan. Association
for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Trans. Speech Lang. Process.,
4(1).

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
Dirichlet process mixture model. In Proceedings
of the 2011 Conference on Empirical Methods in
Natural Language Processing, pages 616—627, Edin-
burgh, Scotland, UK. Association for Computational
Linguistics.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27(2):153-198.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2009. A Bayesian framework for word seg-
mentation: Exploring the effects of context. Cogni-
tion, 112(1):21 — 54.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Huiming Jin, Liwei Cai, Yihui Peng, Chen Xia, Arya D.
McCarthy, and Katharina Kann. 2020. Unsuper-
vised morphological paradigm completion. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics.

Katharina Kann and Hinrich Schiitze. 2016. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
555-560, Berlin, Germany. Association for Compu-
tational Linguistics.

Katharina Kann and Hinrich Schiitze. 2018. Neural
transductive learning and beyond: Morphological
generation in the minimal-resource setting. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3254—
3264, Brussels, Belgium. Association for Computa-
tional Linguistics.

Richard M. Karp. 1980. An algorithm to solve the m x
n assignment problem in expected time O(mn log n).
Networks, 10(2):143-152.

Christo Kirov, Ryan Cotterell, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sebastian Mielke, Arya Mc-
Carthy, Sandra Kiibler, David Yarowsky, Jason Eis-
ner, and Mans Hulden. 2018. UniMorph 2.0: Uni-
versal morphology. In Proceedings of the Eleventh



International Conference on Language Resources
and Evaluation (LREC-2018), Miyazaki, Japan. Eu-
ropean Languages Resources Association (ELRA).

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium.
Association for Computational Linguistics.

Mikko Kurimo, Sami Virpioja, Ville Turunen, and
Krista Lagus. 2010. Morpho challenge 2005-2010:
Evaluations and results. In Proceedings of the
11th Meeting of the ACL Special Interest Group on
Computational Morphology and Phonology, pages
87-95, Uppsala, Sweden. Association for Computa-
tional Linguistics.

Manuel Mager and Katharina Kann. 2020. The
IMS—CUBoulder system for the SIGMORPHON
2020 shared task on unsupervised morphological
paradigm completion. In Proceedings of the 17th
Workshop on Computational Research in Phonetics,
Phonology, and Morphology. Association for Com-
putational Linguistics.

Peter Makarov and Simon Clematide. 2018. Imita-
tion learning for neural morphological string trans-
duction. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2877-2882, Brussels, Belgium. Association
for Computational Linguistics.

Arya D. McCarthy, Ekaterina Vylomova, Shijie Wu,
Chaitanya Malaviya, Lawrence Wolf-Sonkin, Gar-
rett Nicolai, Christo Kirov, Miikka Silfverberg, Se-
bastian J. Mielke, Jeffrey Heinz, Ryan Cotterell, and
Mans Hulden. 2019. The SIGMORPHON 2019
shared task: Morphological analysis in context and
cross-lingual transfer for inflection. In Proceedings
of the 16th Workshop on Computational Research in
Phonetics, Phonology, and Morphology, pages 229—
244, Florence, Italy. Association for Computational
Linguistics.

Arya D. McCarthy, Rachel Wicks, Dylan Lewis, Aaron
Mueller, Winston Wu, Oliver Adams, Garrett Nico-
lai, Matt Post, and David Yarowsky. 2020. The
Johns Hopkins University Bible Corpus: 1600+
tongues for typological exploration. In Proceed-
ings of the Twelfth International Conference on Lan-
guage Resources and Evaluation (LREC 2020). Eu-
ropean Language Resources Association (ELRA).

Taesun Moon, Katrin Erk, and Jason Baldridge. 2009.
Unsupervised morphological segmentation and clus-
tering with document boundaries. In Proceedings of
the 2009 Conference on Empirical Methods in Nat-
ural Language Processing, pages 668—-677, Singa-
pore. Association for Computational Linguistics.

Garrett Nicolai, Dylan Lewis, Arya D. McCarthy,
Aaron Mueller, Winston Wu, and David Yarowsky.

61

2020. Fine-grained morphosyntactic analysis and
generation tools for more than one thousand lan-
guages. In Proceedings of The 12th Language Re-
sources and Evaluation Conference, pages 3963—
3972, Marseille, France. European Language Re-
sources Association.

Garrett Nicolai and David Yarowsky. 2019. Learning
morphosyntactic analyzers from the Bible via itera-
tive annotation projection across 26 languages. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1765—
1774, Florence, Italy. Association for Computational
Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073—
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Abhishek Sharma, Ganesh Katrapati, and Dipti Misra
Sharma. 2018. IIT(BHU)-IIITH at CoNLL-
SIGMORPHON 2018 shared task on universal mor-
phological reinflection. In Proceedings of the
CoNLL-SIGMORPHON 2018 Shared Task: Uni-
versal Morphological Reinflection, pages 105-111,
Brussels. Association for Computational Linguis-
tics.

Assaf Singer and Katharina Kann. 2020. The NYU-
CUBoulder systems for SIGMORPHON 2020 Task
0 and Task 2. In Proceedings of the 17th Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology. Association for Computa-
tional Linguistics.

Benjamin Snyder and Regina Barzilay. 2008. Unsuper-
vised multilingual learning for morphological seg-
mentation. In Proceedings of ACL-08: HLT, pages
737745, Columbus, Ohio. Association for Compu-
tational Linguistics.

Radu Soricut and Franz Och. 2015. Unsupervised mor-
phology induction using word embeddings. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
1627-1637, Denver, Colorado. Association for Com-
putational Linguistics.

John Sylak-Glassman, Christo Kirov, and David
Yarowsky. 2016. Remote elicitation of inflectional
paradigms to seed morphological analysis in low-
resource languages. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 3116-3120, Por-
toroZ, Slovenia. European Language Resources As-
sociation (ELRA).

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In Pro-



ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 674—
680, Beijing, China. Association for Computational
Linguistics.

Oscar Téckstrom, Dipanjan Das, Slav Petrov, Ryan Mc-
Donald, and Joakim Nivre. 2013. Token and type
constraints for cross-lingual part-of-speech tagging.
Transactions of the Association for Computational
Linguistics, 1:1-12.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 Decem-
ber 2017, Long Beach, CA, USA, pages 5998-6008.

Hongzhi Xu, Mitchell Marcus, Charles Yang, and Lyle
Ungar. 2018. Unsupervised morphology learning
with statistical paradigms. In Proceedings of the
27th International Conference on Computational
Linguistics, pages 44-54, Santa Fe, New Mexico,
USA. Association for Computational Linguistics.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora. In
Proceedings of the First International Conference on
Human Language Technology Research.

62



DeepSPIN at SIGMORPHON 2020:
One-Size-Fits-All Multilingual Models

Ben Peters’ and André F. T. Martins'™
TInstituto de Telecomunicagdes, Lisbon, Portugal
fUnbabel, Lisbon, Portugal

benzurdopeters@gmail.com,

Abstract

This paper presents DeepSPIN’s submissions
to Tasks 0 and 1 of the SIGMORPHON 2020
Shared Task. For both tasks, we present
multilingual models, training jointly on data
in all languages. We perform no language-
specific hyperparameter tuning — each of our
submissions uses the same model for all lan-
guages. Our basic architecture is the sparse
sequence-to-sequence model with entmax at-
tention and loss, which allows our models to
learn sparse, local alignments while still being
trainable with gradient-based techniques. For
Task 1, we achieve strong performance with
both RNN- and transformer-based sparse mod-
els. For Task 0, we extend our RNN-based
model to a multi-encoder set-up in which sep-
arate modules encode the lemma and inflec-
tion sequences. Despite our models’ lack of
language-specific tuning, they tie for first in
Task 0 and place third in Task 1.

1 Introduction

Character transduction tasks such as grapheme-to-
phoneme conversion (g2p) and morphological in-
flection are important in many practical real-world
applications. However, it is often difficult to train
models for these tasks with deep learning tech-
niques, due to the scarcity of labeled data for most
of the world’s languages. In these circumstances,
it is common to use a non-neural method with a
stronger inductive bias (Novak et al., 2016) or to
generate synthetic data that hopefully ameliorates
the data scarcity problem. We find both of these
choices unsatisfying. First, older non-neural tech-
niques have a higher floor but also a lower ceiling —
previous SIGMORPHON shared tasks have shown
that neural methods outpace them in the presence
of even moderate quantities of data (Cotterell et al.,
2017). Second, although data augmentation has
proven helpful for morphological inflection (Anas-
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tasopoulos and Neubig, 2019), any data augmenta-
tion procedure makes implicit assumptions about
language structure: techniques that work for West-
ern languages may fail when confronted with redu-
plication, vowel harmony, or non-concatenative
morphology. The kinds of languages for which la-
beled data are scarce are precisely the languages for
which NLP practitioners’ assumptions are most sus-
pect. Therefore, our submissions to this shared task
make use of a third alternative: multilingual train-
ing. Similarly to hallucinated data, multilingual
training improves results in low resource settings
by acting as a regularizer. However, the models
it yields are more versatile, as they are capable of
good performance on several languages at the same
time. We show that our technique is competitive
with state-of-the-art monolingually trained models
regardless of training data size for both g2p and
morphological inflection. This is despite our ap-
proach having a significant disadvantage from a
tuning perspective — while conventional monolin-
gual models can tune their hyperparameters sepa-
rately for each language, we use exactly the same
model for each language within a submission.
Our contributions are as follows:

* We reimplement gated sparse two-headed at-
tention (Peters and Martins, 2019) and apply
it to a massively multilingual setting. We sub-
mit versions of this model using 1.5-entmax
(Peters et al., 2019) and sparsemax (Martins
and Astudillo, 2016) as softmax alternatives.
We tie for first place in Task 0 (Vylomova
et al., 2020). Among the winners, ours are the
only multilingual models.

We show that sparse seq2seq techniques, pre-
viously used for morphological inflection and
machine translation (Peters et al., 2019), are
also effective for multilingual g2p. We make
four submissions to Task 1 (Gorman et al.,
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2020), which differ based on their choice of
softmax replacement (1.5-entmax or sparse-
max) and their architecture (RNN or trans-
former). Our strongest models finish third in
word error rate (WER) and second in phoneme
error rate (PER). Our submissions record the
top result on at least one metric for 7 out of
15 languages, including 4 out of 5 surprise
languages.

2 Models

The common theme of the models we submit is
their use of sparse functions for attention weights
and output distributions, in place of the better-
known softmax (Bridle, 1990). Sparse functions
have the following motivations:

* Sparse attention has previously shown success
on morphological inflection (Peters and Mar-
tins, 2019). It allows the decoder to attend to a
small number of source positions at each time
step, unlike the dense softmax. While hard
attention has previously performed well for
character transduction (Aharoni and Goldberg,
2017; Makarov et al., 2017; Wu et al., 2018;
Wu and Cotterell, 2019), it usually requires an
elaborate and slow training procedure. On the
other hand, sparse attention does not require
any training techniques beyond those used for
standard seg2seq models.

Sparse output distributions allow probability
mass to be concentrated in a small number
of hypotheses. In practice, this happens fre-
quently for morphological inflection (Peters
et al., 2019), sometimes making beam search
exact.

2.1 Entmax and its loss

Our tool for achieving sparsity is the entmax acti-
vation function (Peters et al., 2019), which is pa-
rameterized by a scalar « > 1 and maps a vector
z € R" onto the n—dimensional probability sim-
plex A" = {pcR": p>0,1"p=1}:

a-entmax(z) == argmaxp' z + Ha(p), (1)
pEA™
where
1 o
Ha(p) = { ) 01 g
—ijjlogpj, a=1
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is the Tsallis a-entropy (Tsallis, 1988). For pur-
poses of the shared task, the key point is that
controls the sparsity of the distribution. o = 1 re-
covers softmax, while any value greater than 1 can
result in a sparse probability distribution. Sparse-
max (Martins and Astudillo, 2016) is equivalent to
entmax with a = 2.

An important note about models with sparse out-
put layers is that they cannot be trained with cross
entropy loss, as the cross entropy loss becomes in-
finite when the model assigns zero probability to
the gold label. Fortunately, for each value «, there
is a corresponding loss function, which is given by

La(y, 2) = (p* — &) Tz + Ha(p*), (3

where p* := a-entmax(z). This is an instance of
a Fenchel-Young loss (Blondel et al., 2020).

2.2 Task 0 Architecture

For morphological inflection, we use an RNN-
based two-encoder model with gated attention (Pe-
ters and Martins, 2019). In this model, two separate
bidirectional LSTMs (Graves and Schmidhuber,
2005) encode the lemma character sequence and
the set of inflectional tags. A unidirectional LSTM
(Hochreiter and Schmidhuber, 1997) decoder then
generates the target sequence. The decoder is sim-
ilar to a conventional RNN decoder with input
feeding, except that separate attention mechanisms
compute context vectors independently for each
encoder. A gate function then interpolates the two
context vectors. Like Peters and Martins (2019),
we use a sparse gate, which allows the model to
completely ignore one encoder or the other at each
time step. Each individual attention head uses bi-
linear attention (Luong et al., 2015).

2.3 Task 1 Architecture

We experiment with both RNN-based (Bahdanau
et al., 2015) and transformer-based (Vaswani et al.,
2017) models for g2p. As in Task 0, our RNNs use
input feeding and bilinear attention.

2.4 Handling Multilinguality

Multilingual NLP tasks are intrinsically more dif-
ficult than their monolingual counterparts, as the
correct way to process a sample depends on what
sample the language is in. A simple approach to
multilingual NLP is to append a token to each in-
put sequence identifying the language of the sam-
ple; this has proven effective for both g2p (Peters



et al., 2017) and morphological inflection (Peters
et al., 2019), and is similar to techniques for multi-
lingual neural machine translation (Johnson et al.,
2017). However, this technique has drawbacks: it
forces the true characters and the language token to
“compete” for attention, and it requires the learned
language embedding to have the same size as the
character embeddings.

Therefore, we use the alternative technique of
concatenating a language embedding to the encoder
and decoder input at each time step. Within an ex-
ample, the language embedding is the same across
all time steps. We do not tie language embeddings
between the encoder (or encoders) and decoder,
allowing each model to learn different language
representations for different purposes.

3 Experiments

3.1 Preprocessing

Task 0 We used character-level tokenization for
lemma and inflected forms. Each inflectional tag
was treated as a separate token.

Task 1 Prior to training, we decomposed com-
pound characters in the grapheme sequences in
all languages. For most languages, this simply
amounts to splitting diacritics and their base char-
acters into separate tokens. For Korean, however,
it makes a major difference due to the unique struc-
ture of the Hangul alphabet. Individual letters in
Hangul, called jamo, are composed into blocks rep-
resenting syllables. Modern Hangul contains 40
Jjamo, but the number of possible syllables licensed
by Korean phonotactics is much larger. Conse-
quently, a naive tokenization of the Korean training
data gives a vocabulary size of 834 types, of which
more than 30% occur only once. We suspect that
the lack of jamo tokenization is the reason for the
baselines’ poor performance on Korean.

3.2 Experimental Set-up

We ran experiments with three sparse seq2seq ar-
chitectures: RNNs for inflection, RNNs for g2p,
and transformers for g2p. For entmax, we used
two « values: 1.5 and 2 (i.e. sparsemax). We used
the same « value in both the attention mechanism
and loss function. Combining the architectures and
entmax functions gives six model configurations.
For each, we trained three! model runs with the

'Due to time constraints, the TRANSFORMER-
SPARSEMAX ensemble used only two models.
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Hyperparameters RNN  Transformer
Embedding size 108 236
Language embedding size 20 20
Hidden size 512 256
Positionwise feedforward size - 1024
Layers (all enc. and dec.) 2 4
Dropout 0.3 0.3
Batch size 128 words 1600 char.

Table 1: Hyperparameters for all models.

Model Acc. 1T Lev. Dist. |
INFLECTION-ENTMAX-1.5 90.5 0.217
INFLECTION-SPARSEMAX 90.9 0.211
Baseline (Wu et al., 2020) 90.6 0.215

Table 2: Macro-averaged test results for Task 0.

same hyperparameters. At test time, we ensembled
the models by averaging their probabilities.

3.3 Training

We implemented our models with JoeyNMT
(Kreutzer et al., 2019).2 Our hyperparameters are
shown in Table 1. Each model was trained with
early stopping for a maximum of 100 epochs. We
used greedy decoding at validation time, saving
the model if it had the best character error rate so
far. We used the Adam optimizer (Kingma and Ba,
2015). For RNNs, we set the initial learning rate
to 0.001, reducing it by half whenever the model
failed to improve for two consecutive validations.
Validation was performed every 10,000 steps for
Task 0 and every 500 steps for Task 1. Transform-
ers were trained with a linear learning rate warm up
for 4,000 steps, after which the learning rate was
decayed by an inverse square root schedule.

3.4 Results

At test time, we decoded with a beam size of 5.
Task O results are shown in Table 2 and Task 1 re-
sults are in Table 3. For Task 0, our sparsemax
model outperforms a very strong baseline, with
entmax not far behind. For Task 1, all of our mod-
els outperform all three baselines. In both tasks,
the baselines were trained monolingually, so they
were able to use language-specific hyperparameter
tuning that is unavailable for multilingual models.

2Qur code and configuration files are available at https:
//github.com/deep-spin/sigmorphon-seq2seq.



Model WER | PER|
RNN-ENTMAX-1.5 14.47 2.85
RNN-SPARSEMAX 14.19 2.78
TRANSFORMER-ENTMAX-1.5 14.15 2.92
TRANSFORMER-SPARSEMAX 14.53 2.92
FST Baseline 22.00 4.92
RNN Baseline 16.84 3.99
Transformer Baseline 17.51 4.30

Table 3: Macro-averaged test results for Task 1.
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Figure 1: Single-language development set accuracies
for INFLECTION-SPARSEMAX.

4 Analysis

Next we consider a few questions that multilingual
models raise.

4.1 How much data does inflection need?

All other things being equal, we expect the perfor-
mance of a model to improve as the amount of train-
ing data is increased. And indeed, this is generally
the case, as Figure 1 shows that accuracy is usually
above 90% for languages with more than 10,000
training samples. However, there is much more
diversity of performance at smaller training sizes.
Per-family development set results are shown in Ta-
ble 4. While families like Niger-Congo record very
strong results with modest resources, Germanic
and Uralic struggle despite their large training sets.
It is likely that certain morphological patterns are
easier to learn than others, but we hesitate to make
strong statements. Often results are very different
between closely related languages, such as Danish
(68.20% on dev) and Swedish (99.20%). More re-
search is needed to identify other factors besides
morphological typology that influence results.
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#languages  Train size Acc.
Family (avg.)
Afro-Asiatic 3 1524.67 94.90
Algic 1 4571.00 71.23
Australian 1 777.00 75.68
Austronesian 5 748.20 79.96
Dravidian 2 2311.00 88.78
Germanic 13 30995.69 87.30
Indo-Aryan 4 17642.50 98.37
Iranian 3 10046.33 96.49
Niger-Congo 10 1651.60 97.32
Nilo-Saharan 1 56.00 100.00
Oto-Manguean 10 7799.30 83.45
Romance 8 16075.12 98.15
Sino-Tibetan 1 3428.00 84.76
Siouan 1 2636.00 89.89
Tungusic 1 5413.00 59.43
Turkic 9 9268.33 94.76
Uralic 16  45805.31 89.21
Uto-Aztecan 1 1123.00 83.75

Table 4: Task O dev accuracy by language family for
INFLECTION-SPARSEMAX.

4.2 Crosslingual Character Embeddings

Learning good word representations has been
a prominent subject in NLP for several years
(Mikolov et al., 2013; Peters et al., 2018). Al-
though many models operate at the character level,
relatively little attention has been paid to the char-
acter embeddings themselves. Characters lack se-
mantic meaning, so character embeddings learned
for “semantic” tasks are unlikely to learn any
particular structure. However, Figure 2 shows
that multilingual g2p may be useful for learn-
ing phonologically grounded character represen-
tations: graphemes from different scripts cluster
together if they represent similar phonemes. We
suspect that the multilingual training with phono-
logical supervision is a necessary ingredient for this
to work — characters from different scripts are never
mixed within a single sample, so the grapheme con-
texts in which they occur are completely disjoint.

This idea differs from work on phoneme em-
beddings (Silfverberg et al., 2018; Sofroniev and
Coltekin, 2018) in that the focus is explicitly on
the graphemes. Grapheme embeddings learned for
phonological tasks may prove useful for translit-
eration, or for processing informally romanized
text (Irvine et al., 2012) jointly with data from the
official orthography.

5 Related Work

Multi-encoder models Several previous works
have considered ways to integrate information from
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Figure 2: t-SNE projection (Maaten and Hinton, 2008) of the grapheme embeddings learned by TRANSFORMER-
1.5. For improved readability, we include only Cyrillic, Greek, and Latin graphemes. Graphemes that tend to

represent similar phonemes are clustered together.

multiple sources in a neural seq2seq model. Al-
though initially proposed as a way to leverage mul-
tiparallel data in machine translation (Zoph and
Knight, 2016), it has also been used for handling
multimodal data, and Acs (2018) applied it to mor-
phological inflection: our architecture is essentially
a sparsified version of this model. Past works have
also considered the effect of different strategies
for merging the attention from the various encoders
(Libovicky and Helcl, 2017; Libovicky et al., 2018).
This is worth exploring for morphological inflec-
tion, as Peters and Martins (2019) showed that the
behavior of the attention gating mechanism varies
between language families. The optimal strategy is
probably different for different languages.

Phonemes and multilinguality Multilingual
methods have previously been used for low re-
source g2p in conjunction with both non-neural
(Deri and Knight, 2016) and neural (Peters et al.,
2017; Route et al., 2019) architectures. Our model
is essentially identical to Peters et al. (2017)’s,
but with a different mechanism for identifying
the language, inspired by a technique for learning
language embeddings from multilingual language
modeling (Ostling and Tiedemann, 2017). A nat-
ural connection is to work that makes use of typo-
logical information in multilingual NLP (Tsvetkov
et al., 2016). However, care needs to be taken when
applying this to g2p: Bjerva and Augenstein (2018)
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showed that language representations learned from
multilingual g2p generally do not encode typologi-
cal features because orthographic similarity does
not correlate with typological similarity.

6 Conclusion

We showed that massively multilingual models are
competitive with the individually-tuned state of
the art for morphological inflection and g2p. We
presented the first result applying entmax-based
sparse attention and losses to g2p, showing that it
performed with both RNN and transformer models.
We release our code to facilitate further research.
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Abstract

We present an iterative data augmentation
framework, which trains and searches for
an optimal ensemble and simultaneously
annotates new training data in a self-training
style. We apply this framework on two SIG-
MORPHON 2020 shared tasks: grapheme-
to-phoneme conversion and morphological
inflection. With very simple base models in
the ensemble, we rank the first and the fourth
in these two tasks. We show in the analysis
that our system works especially well on low-
resource languages. The system is available at
https://www.ims.uni-stuttgart.de/
en/institute/team/Yu-00010/.

1 Introduction

The vast majority of languages in the world have
very few annotated dataset available for training
natural language processing models, if at all. Deal-
ing with the low-resource languages has sparked
much interest in the NLP community (Garrette
etal., 2013; Agié et al., 2016; Zoph et al., 2016).
When annotation is difficult to obtain, data aug-
mentation is a common practice to increase training
data size with reasonable quality to feed to pow-
erful models (Ragni et al., 2014; Bergmanis et al.,
2017; Silfverberg et al., 2017). For example, the
data hallucination method by Anastasopoulos and
Neubig (2019) automatically creates non-existing
“words” to augment morphological inflection data,
which alleviates the label bias problem in the gen-
eration model. However, the data created by such
method can only help regularize the model, but
cannot be viewed as valid words of a language.
Orthogonal to the data augmentation approach,
another commonly used method to boost model
performance without changing the architecture is
ensembling, i.e., by training several models of the
same kind and selecting the output by majority
voting. It has been shown that a key to the success
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of ensembling is the diversity of the base models
(Surdeanu and Manning, 2010), since models with
different inductive biases are less likely to make
the same mistake.

In this work, we pursue a combination of both
directions, by developing a framework to search
for the optimal ensemble and simultaneously an-
notate unlabeled data. The proposed method is an
iterative process, which uses an ensemble of hetero-
geneous models to select and annotate unlabeled
data based on the agreement of the ensemble, and
use the annotated data to train new models, which
are in turn potential members of the new ensem-
ble. The ensemble is a subset of all trained models
that maximizes the accuracy on the development
set, and we use a genetic algorithm to find such
combination of models.

This approach can be viewed as a type of self-
training (Yarowsky, 1995; Clark et al., 2003), but
instead of using the confidence of one model, we
use the agreement of many models to annotate new
data. The key difference is that the model diversity
in the ensemble can alleviate the confirmation bias
of typical self-training approaches.

We apply the framework on two of the SIGMOR-
PHON 2020 Shared Tasks: grapheme-to-phoneme
conversion (Gorman et al., 2020) and morphologi-
cal inflection (Vylomova et al., 2020). Our system
rank the first in the former and the fourth in the
latter.

While analyzing the contribution of each compo-
nent of our framework, we found that the data aug-
mentation method does not significantly improve
the results for languages with medium or large train-
ing data in the shared tasks, i.e., the advantage of
our system mainly comes from the massive ensem-
ble of a variety of base models. However, when
we simulate the low-resource scenario or consider
only the low-resource languages, the benefit of data
augmentation becomes prominent.
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2 Ensemble Self-Training Framework

2.1 General Workflow

In this section we describe the details of our frame-
work. It is largely agnostic to the type of supervised
learning task, while in this work we apply it on two
sequence generation tasks: morphological inflec-
tion and grapheme-to-phoneme conversion. The
required component includes one or more types of
base models and large amount of unlabeled data.
Ideally, the base models should be simple and fast
to train with reasonable performance, and as di-
verse as possible, i.e., models with different archi-
tectures are better than the same architecture with
different random seeds.

The workflow is described in Algorithm 1. Ini-
tially, we have the original training data Lg, unla-
beled data U, and several base model types 7.
In each iteration n, there are two major steps: (1)
ensemble training and (2) data augmentation. In the
ensemble training step, we train each base model
type on the current training data L,, to obtain the
models m}-*, and add them into the model pool
(line 4-8). We then search for an optimal subset of
the models from the pool as the current ensemble,
based on its performance on the development set
(line 9). In the data augmentation step, we sample
a batch of unlabeled data (line 10), then use the
ensemble to predict and select a subset of the in-
stances based on the agreement among the models
(line 11). The selected data are then aggregated
into the training set for later iterations (line 12-13).

2.2 Ensemble Search

Simply using all the models as the ensemble would
be not only slow but also inaccurate, since too many
inferior models might even mislead the ensemble,
therefore searching for the optimal combination is
needed. However, an exact search is not feasible,
since the number of combinations grows exponen-
tially. We use the genetic algorithm for heteroge-
neous ensemble search largely following Haque
et al. (2016). In the preliminary experiments, the
genetic algorithm consistently finds better ensem-
bles than random sampling or using all models.
We use a binary encoding such as 0100101011
to represent an ensemble combination (denoted as
an individual in genetic algorithms), where each
bit encodes whether to use one particular model.
As we aim to maximizing the prediction accu-
racy of the ensemble, we define the fitness score of
an individual as the accuracy on the development
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Algorithm 1 Ensemble Self-Training (EST)
1: function EST(L, U, T)

Require: labeled data L

Require: unlabeled data U

Require: tools T’

2: Initial data Lo = L

3 Model pool M = ()

4 forn :0...N do

5 for t* ¢ T do

6: mkF = TRAIN(t*, L,,)

7 M =M uU{mk}

8 end for

9: E = SEARCHENSEMBLE(M)
10 Sample u ~ U

11: | = SELECTDATA(E, u)

12: Ly +1 = AGGREGATEDATA(L,,, 1)
13: U=U-1

14: end for

15: return E, L

16: end function

set by the ensemble represented by the individual.

Initially, we generate 100 random individuals
into a pool, which is maintained at the size of 100.
Whenever a new individual enters the pool, the
individual with the lowest fitness score will be re-
moved.

Each new individual is created through three
steps: parent selection, crossover, and mutation.
Both parents are selected in a tournament style, in
which we sample 10 individuals from the pool, and
take the one with the highest fitness score. In the
crossover process, we take each bit randomly from
one parent with a rate of 60%, and 40% from the
other. In the mutation process, we flip each bit of
the child with a probability of 1%. To ensure the
efficiency of the ensemble, we also limit the num-
ber of models in the combination to 20: if a newly
evolved combination exceeds 20 models, we ran-
domly reduce the number to 20 before evaluating
the fitness.

In each search, we evolve 100,000 individuals,
and return the one with the highest fitness score.
Since the data size is relatively small, the ensemble
search procedure typically only takes a few sec-
onds.

2.3 Data Selection and Aggregation

In each iteration, we use the current optimal en-
semble to predict a batch of new data, and select a
subset as additional data to train models in the next



iteration.

There are various heuristics to select new data,
with two major principles to consider: (1) one
should prefer the instances with higher agreement
among the models, since they are more likely to be
correct; (2) instances with unanimous agreement
might be too trivial and does not provide much new
information to train the models.

To strike a balance between the two considera-
tions, we first rank the data by the agreement, but
only take at most half of the instances with unani-
mous agreement as new annotated data. Concretely,
we sample 20,000 instances to predict, and use at
most 3,600 instances as new data if their predic-
tions have over 80% agreement, among which, at
most 1,800 instances have 100% agreement. Note
that we chose the data size of 3,600 because it is
the training data size in the grapheme-to-phoneme
conversion task, and we used the same setting for
the morphological inflection task without tuning.

There are also different ways to aggregate the
new data. One could simply accumulate all the
selected data, resulting in much larger training data
in the later iterations, which might slow down the
training process and dilute the original data too
much. Alternatively, one could append only the se-
lected data from the current iteration to the original
data, which might limit the potential of the models.

Again, we took the middle path, in which we
keep half of all additional data from the previous it-
eration together with the selected data in the current
iteration. For example, there are 3600 additional in-
stances produced in iteration 0, 3600/2 + 3600 =
5400 in iteration 1, 5400/2 4+ 3600 = 6300 in
iteration 2, and the size eventually converges to
3600 x 2 = 7200.

3 Grapheme-to-Phoneme Conversion

3.1 Task and Data

We first apply our framework on the grapheme-to-
phoneme conversion task (Gorman et al., 2020),
which includes 15 languages from the WikiPron
project (Lee et al., 2020) with a diverse typolog-
ical spectrum: Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Hindi (hin), Hungar-
ian (hun), Icelandic (ice), Korean (kor), Lithuanian
(lit), Modern Greek (gre), Adyghe (ady), Dutch
(dut), Japanese hiragana (jpn), Romanian (rum),
and Vietnamese (vie).

As preprocessing, we romanize the scripts of
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Japanese and Korean,'2 which show improvements
in preliminary experiments. The reason is that the
Japanese Hiragana and Korean Hangul characters
are both syllabic, in which one grapheme typically
corresponds to multiple phonemes, and by roman-
izing them (1) the alphabet size is reduced, and (2)
the length ratio of the source and target sequences
are much closer to 1:1, which empirically improve
the quality of the alignment.

As unlabeled data, we use word frequency lists,’
which are mostly extracted from OpenSubtitles (Li-
son and Tiedemann, 2016). For the two languages
we did not find in OpenSubtitles, Adyghe is ob-
tained from the corpus by Arkhangelskiy and Lan-
der (2016),* and Georgian is obtained from several
text corpora.>®

Since the word lists are automatically extracted
from various sources with different methods and
quality, we filter them by the alphabet of the train-
ing set of each language, and keep at most 100,000
most frequent words.

3.2 Models

As the framework desires the models to be as di-
verse as possible to maximize its benefit, we em-
ploy four different types of base models with dif-
ferent inductive biases.

The first type is the Finite-State-Transducer
(FST) baseline by Lee et al. (2020), based on the
pair n-gram model (Novak et al., 2016).

The other three types are all variants of Seq2Seq
models, where we use the same BiLSTM encoder
to encode the input grapheme sequence. The first
one is a vanilla Seq2Seq model with attention
(attn), similar to Luong et al. (2015), where the
decoder applies attention on the encoded input and
use the attended input vector to predict the output
phonemes.

The second one is a hard monotonic attention
model (mono), similar to Aharoni and Goldberg
(2017), where the decoder uses a pointer to select
the input vector to make a prediction: either produc-

'nttps://pypi.org/project/pykakasi/

https://pypi.org/project/
hangul-romanize/

‘https://github.com/hermitdave/
FrequencyWords/

‘https://github.com/timarkh/
uniparser—-grammar—-adyghe

Shttps://github.com/akalongman/
geo—-words

8Georgian is actually in OpenSubtitles, but we accidentally
missed it because of a confusion with the language code.



ing a phoneme, or moving the pointer to the next
position. The monotonic alignment of the input
and output is obtained with the Chinese Restaurant
Process following Sudoh et al. (2013), which is pro-
vided in the baseline model of the SIGMORPHON
2016 Shared Task (Cotterell et al., 2016).

The third one is essentially a hybrid of hard
monotonic attention model and tagging model
(tag), i.e., for each grapheme we predict a short
sequence of phonemes that is aligned to it. It re-
lies on the same monotonic alignment for training.
This model is different from the previous one in
that it can potentially alleviate the error propaga-
tion problem, since the short sequences are non-
autoregressive and independent of each other, much
like tagging.

For each of the three models, we further cre-
ate a reversed variant, where we reverse the input
sequence and subsequently the output sequence.
On average, the best model types are the tagging
models of both directions.

Since we need to train many base models, we
keep their sizes at a minimal level: the LSTM en-
coder and decoder both have one layer, all dimen-
sions are 128, and no beam search is used. As a
result, each base model has about 0.3M parameters
and takes less than 10 minutes to train on a single
CPU core.

3.3 Experiments

With the ensemble self-training framework, we
train 14 base models at each iteration: FST mod-
els with 3-grams and 7-grams (£st-3, f£st-7),
two instances for each direction of the attention
model (attn-12r, attn-r21), hard monotonic
model (mono-12r, mono-r21), and tagging
model (tag-12r, tag-r21).

Table 1 shows the number of iterations when
the optimal ensemble is found and the number of
models it contains, as well as the Word Error Rate
(WER) and Phone Error Rate (PER) on the test set,
in comparison to the Seq2Seq baseline provided by
the organizer. Generally, our system outperforms
the strong baseline in 13 out of 15 languages, and
the gap for Korean is especially large, due to the
romanization in our preprocessing. For three lan-
guages (Hungarian, Japanese, and Lithuanian), the
best ensemble is in the O-th iteration, which means
the augmented data for them is not helpful at all.

Our ensemble system rank the first in terms of
both WER and PER on the test set, with an average
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IMS Seq2Seq

#iter #model | WER PER |WER PER
ady | 4 20 |25.33 5.79(28.00 6.53
arm | 5 20 |12.67 2.94|14.67 3.49
bul 4 10 22,22 4.85|31.11 594
dut 2 13 |13.56 2.36|16.44 294
fre 1 17 6.89 1.60| 6.22 1.32
geo | 6 20 |24.89 4.57(2644 5.14
gre 1 12 |18.67 2.97|18.89 3.30
hin 1 20 511 1.20| 6.67 1.47
hun | O 5 511 1.12) 533 1.18
ice 5 20 9.33 2.04|10.00 2.36
jpn 0 6 5.33 1.26| 7.56 1.79
kor 4 8 12622 4.38]46.89 16.78
lit 0 5 20.00 3.63|19.11 3.55
rum | 1 8 10.22 2.23/10.67 2.53
vie 5 20 1.56 048] 4.67 1.52
AVG| 3 14 |13.81 2.76|16.84 3.99

Table 1: Evaluation on the test set of the grapheme-to-
phoneme conversion task, comparing our system with
the best performing seq2seq baseline. The first two
columns are the number of iterations when the best en-
semble is found and the number of base models in the
ensemble.

WER of 13.8 and PER of 2.76. However, a large
ensemble of simple models is not exactly compara-
ble with other single-model systems, and it is thus
difficult to derive a conclusion from the evaluation
alone. We are more interested in understanding
how much of the improvement comes from the en-
semble and its model diversity and how much from
the data augmentation process.

For this purpose, we run our framework in two
additional scenarios. In the first scenario, we
reduce the diversity of the models (denoted as
-diversity), where we only use the base model
tag-12r and tag-r21, which performs the best
among others, but keep the same number of models
trained in each iteration as before. In the second
scenario, we do not perform data augmentation (de-
noted as -augmentation), i.e., all models are trained
on the same original training data in each iteration.

Table 2 shows the WER on the development set
of the default scenario and the two experimental
scenarios. For each scenario, we show the average
WER of all models and the WER of the ensemble
from the initial iteration and the best iteration.

We can observe three trends in the table. (1) In
all scenarios, there is a large gap between the aver-



default -diversity -augment

average ensemble | average ensemble | average ensemble

init best init best |init best init best |init best init best
ady [28.9 27.7 22.4 21.6|26.6 27.2 229 22.2|28.7 28.1 22.7 20.9
arm |18.8 17.4 13.1 11.3]|16.1 154 12.2 11.8]|18.7 18.1 12.2 10.7
bul |36.8 36.2 25.3 20.0|35.5 35.5 27.6 23.8|37.3 36.1 24.2 18.7
dut [19.5 18.8 11.8 10.4|18.5 18.8 12.2 10.9|19.7 19.6 11.6 9.8
fre |15.1 157 6.0 56132 13.6 6.7 6.2(15.6 152 7.1 5.1
geo (269 26.7 20.2 17.8(26.6 25.1 20.7 18.4|27.0 26.8 19.6 16.7
gre |20.1 184 13.8 12.7|17.3 16.8 12.7 11.3/19.9 19.8 129 11.8
hin | 97 90 40 36| 81 69 42 40| 9.7 93 40 3.6
hun | 45 45 20 20| 40 39 24 22| 47 47 24 24
ice |153 141 64 56(119 114 56 53(148 146 62 5.6
jpn 80 80 60 60| 7.7 77 62 62| 8.0 80 58 5.8
kor |259 23.4 16.2 144|209 20.7 16.9 16.0(25.9 25.6 16.4 14.2
lit |24.5 245 184 18.4|22.7 22.7 18.2 18.2|24.4 249 18.2 16.7
rum |14.6 13.7 10.2 9.8|12.2 122 10.0 9.3|144 145 9.8 8.7
vie 60 58 1.1 09| 53 53 20 20| 60 62 13 0.7

AVG (183 17.6 11.8 10.7|16.4 16.2 12.0 11.2‘18.3 18.1 11.6 10.1

Table 2: WER on the development set in the three scenarios (default, reduced diversity, and without data aug-
mentation). In each scenario, we show the average model performance and the ensemble performance in the first

iteration and the best iteration.

age model performance and the ensemble perfor-
mance, which clearly demonstrates the benefit of
the ensemble. (2) In the -diversity scenario, the av-
erage model performance is better than the default
scenario, but the ensemble performance is worse
than the default scenario, which demonstrates the
importance of the model diversity. (3) The aver-
age model performance in the default scenario has
clear improvement as opposed to the random fluctu-
ation in the -augmentation scenario, which means
that the data augmentation can indeed benefit some
individual models. However, to our surprise and
disappointment, the ensemble performance of the
-augmentation scenario is even slightly better than
the default scenario, which casts a shadow over the
data augmentation method in this framework.

As our framework is designed for low-resource
languages, and the data size of 3,600 in the task
is already beyond low-resource, we therefore ex-
periment in a simulated low-resource scenario.’
For each language, we randomly sample 200 in-
stances as the new training data, while ensuring
that all graphemes and phonemes in the training

"Consider the Swadesh list (Swadesh, 1950) with only
100-200 basic concepts/words, which could be thought of as
a typical low-resource scenario. In the WikiPron collection,
more than 20% of the 165 languages have less than 200 words.
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data appear at least once.

Table 3 shows the WER of the default and -
augment scenario in the low-resource experiment.
Similar to the previous experiment, the ensemble
greatly reduces errors of individual models. More
importantly, the individual models benefit signifi-
cantly from the augmented data (from 54.2 to 35.5),
and the final ensemble further reduces the error rate
to 25.2. The WER in the default scenario is much
better than the -augment scenario (25.2 vs 29.2),
which means that the data augmentation is indeed
beneficial when the training data is scarce.

4 Morphological Inflection
4.1 Task and Data

We also apply our framework on the morphologi-
cal inflection task (Vylomova et al., 2020), where
the input is a combination of lemmata and mor-
phological tags according to the UniMorph schema
(Sylak-Glassman et al., 2015), and the output is
the inflected word forms. There are 90 languages
with various data sizes, ranging from around 100
to 100,000.

As unlabeled data for the augmentation process,
we simply recombine the lemmata and morphologi-
cal tags of the same category in the training set (i.e.,



default -augment

average ensemble| average ensemble

init best init best| init best init best
ady [62.3 41.3 44.4 30.0|63.0 62.1 44.4 37.8
arm [42.6 30.2 28.0 22.9|42.5 41.9 28.9 23.3
bul |68.8 58.0 53.6 48.4|67.4 66.8 53.3 47.3
dut |64.9 37.8 45.6 27.6/64.7 63.2 43.1 324
fre |62.0 34.0 34.9 18.9|61.8 61.3 35.1 29.3
geo |40.5 34.4 29.8 26.040.6 39.6 30.4 24.7
gre [56.8 37.7 37.3 28.0|57.4 55.8 39.3 31.3
hin |53.8 22.2 32.2 12.7|53.5 52.8 33.8 24.4
hun 422 19.7 21.8 12.7|42.8 41.6 21.6 16.7
ice |71.1 51.1 53.8 42.9(73.6 70.4 55.8 49.8
jpn |41.4 16.5 19.8 11.1|42.1 404 21.3 15.6
kor |53.4 39.4 36.9 30.4|54.6 53.1 38.2 32.9
lit |66.3 51.8 49.1 38.4|67.4 65.9 48.7 39.8
rum |37.5 24.7 22.9 16.4|38.1 37.1 23.1 18.2
vie |50.3 33.4 23.8 11.1(50.6 49.3 21.6 144

AVG|54.2 35.5 35.6 25.2|54.7 53.4 35.9 29.2

Table 3: WER on the development set for the simulated
low-resource experiment in the scenarios with and with-
out data augmentation. In each scenario, we show the
average model performance and the ensemble perfor-
mance in the first iteration and the best iteration.

a verb lemma only combines with all morphologi-
cal tags for verbs), with a maximum size of 100,000
for each language. For many languages, however,
the recombination is as scarce as the original data
since they are from (almost) complete inflection
paradigms of a few lemmata. In total, we obtained
1,422,617 instances, which is slightly smaller than
the training set with 1,574,004 instances. Since
the additional data come directly from the original
training data, we consider it the restricted setting,
where no external data sources or cross-lingual
methods are used.

4.2 Models

Due to our late start in this task, we only imple-
mented two types of base models, paired with left-
to-right and right-to-left generation order. The first
type is a Seq2Seq model with soft attention, very
similar to the one in the grapheme-to-phoneme con-
version task, except that an additional BiLSTM is
used to encode the morphological tags. The second
type is a hard monotonic attention model, also sim-
ilar as before, but instead of using the alignment
with the Chinese Restaurant Process, we use Lev-
enshtein edit scripts to obtain the target sequence,

Model Accuracy
CULing-01-0 0.912
deepspin-02-1 0.909
uiuc-01-0 0.905
IMS-00-0 0.892
mono 0.858
trm 0.901
mono-aug 0.888
trm-aug 0.903

Table 4: Evaluation on the test set of the morphological
inflection task, comparing our system to three winning
systems and four baselines.

since the input and the output share the same al-
phabet. At each step, the model either outputs
a character from the alphabet, or copies the cur-
rently pointed input character, or advances the in-
put pointer to the next position. In total, we train 8
models per iteration, i.e., two models with different
random seeds for each variant. The hyperparam-
eters are largely the same as in the previous task,
and each model has about 0.5M parameters.

4.3 Experiments

Table 4 compares the average test accuracy between
our system (IMS-00-0) and the systems of the win-
ning teams as well as the baselines. The baselines
include a hard monotonic attention model with la-
tent alignment (Wu and Cotterell, 2019) and a care-
fully tuned transformer (Vaswani et al., 2017; Wu
et al., 2020), noted as mono and t rm. They are ad-
ditionally trained with augmented data by Anasta-
sopoulos and Neubig (2019), noted as mono—-aug
and t rm-aug.

On average, our system ranks the fourth among
the participating teams and the third in the re-
stricted setting (without external data source or
cross-lingual methods). It outperforms the hard
monotonic attention baseline, but not the trans-
former baseline. More details on the systems and
their comparisons are described in Vylomova et al.
(2020). Compared to the previous task, we used
fewer base models, in terms of both number and
diversity, which partly explains the relatively lower
ranking.

In this task, the data size ranges across several
magnitude for different languages. We thus analyze
the performance difference of our system against
the two baselines with their own data augmentation
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Figure 1: Performance difference between our system
and the two baselines with data augmentation, with re-
spect to the training data size.

(mono—-aug and trm-aug) with respect to the
original training data size, as illustrated in Figure 1.
We removed the trivial cases in which both models
achieved 100% accuracy.

Clearly, our system performs better for lan-
guages with smaller training data size, while losing
to the powerful baseline models when the data size
is large. This again demonstrates the benefit of our
framework for low-resource languages.

We also mark the major language families to see
whether they play a role in the performance differ-
ence, since different inductive biases might work
differently on particular language families. For
example, the right-to-left generation order might
work better on languages with inflectional prefixes.
However, we could not find any convincing pat-
terns regarding language families in the plot, i.e.,
there is not a language family in the data set where
our model always performs better or worse than the
baseline. The only exception is the Austronesian
family, where our system generally outperforms
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the baselines, but they all have relatively small data
size, which is a more probable explanation.

Note that our augmentation method is theoreti-
cally orthogonal to the hallucination method (Anas-
tasopoulos and Neubig, 2019), and could be com-
bined to further improve the performance of the
baseline models for low-resource languages.

5 Conclusion

We present an ensemble self-training framework
and apply it on two sequence-to-sequence genera-
tion tasks: grapheme-to-phoneme conversion and
morphological inflection. Our framework includes
an improved self-training method by optimizing
and utilizing the ensemble to obtain more reliable
training data, which shows clear advantage on low-
resource languages. The optimal ensemble search
method with the genetic algorithm easily accom-
modates the inductive biases of different model
architectures for different languages.

As a potential future direction, we could incor-
porate the framework into the scenario of active
learning to reduce annotator workload, i.e., by sug-
gesting plausible predictions to minimize the need
of correction.
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Abstract

This paper describes the CMU-LTI submis-
sion to the SIGMORPHON 2020 Shared Task
0 on typologically diverse morphological in-
flection. The (unrestricted) submission uses
the cross-lingual approach of our last year’s
winning submission (Anastasopoulos and Neu-
big, 2019), but adapted to use specific trans-
fer languages for each test language. Our
system, with fixed non-tuned hyperparameters,
achieved a macro-averaged accuracy of 80.65
ranking 20" among 31 systems, but it was still
tied for best system in 25 of the 90 total lan-
guages.

1 Introduction

Morphological inflection is the process that creates
grammatical forms (typically guided by sentence
structure) of a lexeme/lemma. As a computational
task it is framed as mapping from the lemma and
a set of morphological tags to the desired form,
which simplifies the task by removing the necessity
to infer the form from context. For an example
from Asturian, given the lemma aguar and tags
V;PRS;2;PL;IND, the task is to create the indicative
voice, present tense, 2" person plural form agua.

Let X = =z;...zxy be a character sequence
of the lemma, T = ¢;...%) a set of morpho-
logical tags, and Y Y1 ...Yx be an inflec-
tion target character sequence. The goal is to
model P(Y | X, T). The problem has been stud-
ied in various settings through the SIGMORPHON
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shared tasks (Cotterell et al., 2016, 2017, 2018; Mc-
Carthy et al., 2019), with the 2019 edition focusing
in particularly challenging low-resource scenarios.
The 2020 edition (Vylomova et al., 2020) focused
on generalization of systems across typologically
diverse languages, regardless of data size.

In our submission we built upon our previous
work (Anastasopoulos and Neubig, 2019), utilizing
cross-lingual transfer from related languages, data
hallucination, and a series of training techniques
and regularizers. The defining change was that
we attempted to create language-specific regimes
for each test language, depending on the particular
characteristics of the language, on the data avail-
ability for the particular test language and the avail-
ability of other related language data. As a result,
for some high-resource languages we submitted
systems without cross-lingual transfer, for some
we used a single related high resource language,
and for some we used multiple related languages.
Last, for a few test languages we augmented our
datasets with romanized versions of the training
data, an approach that has shown promising results
in concurrent work (Murikinati et al., 2020).

Our submissions are very competitive in 25 of
the 90 test languages, with performance statistically
significant similar to the best performing system,
but fall behind in many other languages. We sus-
pect that this is due to our not tuning of the system’s
hyperparameters towards higher-resource settings.

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 79-84
Online, July 10, 2020. ©2020 Association for Computational Linguistics
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Language Accuracy | Language Accuracy | Language Accuracy | Language Accuracy
aka 99.1 fas 96.2 1id 97.7 sna 100.0
ang 75.4 fin 97.3 Iud 53.7 sot 100.0
ast 91.4 frm 98.8 lug 90.6 swa 100.0
aze 78.5 frr 85.5 mao 69.0 swe 95.4
azg 89.0 fur 98.3 mdf 92.7 syc 91.6
bak 97.4 gaa 100.0 mhr 90.8 tel 94.9
ben 98.6 glg 97.4 mlg 100.0 tgk 93.8
bod 84.7 gmh 90.1 mlt 88.7 tgl 64.0
cat 97.5 gml 60.8 mwf 70.3 tuk 85.4
ceb 84.7 gsw 84.9 myv 93.0 udm 97.5
cly 81.0 hil 92.4 nld 97.5 uig 91.9
cpa 83.5 hin 98.4 nno 74.2 urd 36.3
cre 44.9 isl 95.3 nob 75.1 uzb 51.5
crh 97.2 izh 80.8 nya 100.0 vec 98.8
ctp 50.2 kan 75.1 olo 91.5 vep 79.3
czn 81.3 kaz 88.5 ood 79.0 vot 77.2
dak 89.7 kir 88.4 orm 93.6 VIO 57.3
dan 72.3 kjh 98.8 ote 97.0 Xno 90.2
deu 92.8 kon 98.1 otm 97.4 Xty 90.2
dje 100.0 kpv 95.9 pei 71.2 zZpv 82.9
eng 96.5 krl 95.0 pus 68.6 zul 89.7
est 93.5 lin 100.0 san 92.6
evn 55.0 liv 93.1 sme 97.9

Table 1: Accuracy of our system on every language. We highlight the languages where our system was statistically

equal to the best system (with p < 0.005).

2 System Description

Our system is the same as the one of Anasta-
sopoulos and Neubig (2019): a neural multi-source
encoder-decoder (which reads in the lemma and
the tag sequences in a disentangled manner using
two separate encoders) with a task-specific atten-
tion mechanism. We skip providing further redun-
dant information and we direct the interested reader
to (Anastasopoulos and Neubig, 2019) for all de-
tails. It is important to note, however, that we did
not tune any model hyperparameters for our sub-
missions (which we suspect contributed to the poor
performance of our system in some languages);
we used the default parameters from the system’s
distribution ! which are tuned towards extremely
low-resource settings.

Here, we provide an exhaustive list of modifi-
cations to the general pipeline that we devised for
specific languages and language families.

1https ://github.com/antonisa/inflection
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Data Hallucination for tonal languages The
data hallucination process of Anastasopoulos and
Neubig (2019), inspired by Silfverberg et al. (2017),
samples random characters from the language’s al-
phabet to replace characters in stem-like regions
discovered from the training examples through a
simple alignment-based heuristic.

Tonal languages like Eastern Highland Chatino
(cly), importantly, often denote the syllable’s tone
through superscript diacritics: take the Eastern
Highland Chatino lemma sqwe'* and its second
person singular number habitual mood inflected
form nsqwe?®. The data hallucination technique
would identify the substring sqwe as a stem-like
region, and replace its characters with random ones.
A completely random substitution, however, could
lead to the creation of nonsensical syllables, if tone
diacritics are inserted instead of letter characters
e.g. if we hallucinated a s3ae!* lemma for the
above example. Similarly, if a stem-like region
includes a tone diacritic, we would not want to
randomly replace it with non-diacritic characters,



lest we end up with badly formed syllables without
tone information.

To avoid these issues, we restrict the random sub-
stitutions for Oto-Manguean languages with tone
diacritics, so that we only sample tone diacritics if
we are substituting a tone diacritic (and similarly
for letter characters). We have found this approach
to significantly improve results in previous work
on morphological inflection for Eastern Highland
Chatino (Cruz et al., 2020).

Single-Language Systems for High Resource
Languages For languages with more than 20,000
training examples, we decided to not use cross-
lingual transfer nor data hallucination, as sys-
tems in previous SIGMORPHON shared tasks
achieved very competitive performance on such
high-resource settings without these additions. For
languages with less than 20,000 but more than
10,000 training examples, we used our data halluci-
nation process to create 10,000 additional training
examples to be used for training.

Cross-Lingual Transfer from a Single Lan-
guage For some languages we decided to use a
single, high-resource related language to combine
into our training to perform cross-lingual transfer,
along with data hallucination. We based most these
decisions in previous results (mainly from (Anas-
tasopoulos and Neubig, 2019)), but some where
our semi-arbitrary experimenter’s intuitions. We
provide a complete list of these settings:

o for Middle High German (gmh) we used Ger-
man (deu),

o for Middle Low German (gml) we used Ger-
man (deu) also bypassing data hallucination,

e for Swiss German (gsw) we used German

(deu),

for North Frisian (frr) we used Dutch (nld),

for Kannada (kan) we used Telugu (tel),

for Telugu (tel) we used Kannada (kan),

for Asturian (ast) we used Galician (glg),

for Friulian (fur) we used French (fra),

for Ladin (lad) we used Friulian (fur),

for Venetian (vec) we used Italian (vec),

for Anglo-Norman (xno) we used Middle

French (frm),

for Azerbaijani (aze) we used Turkish (tur),

o for Khakas (kjh) we used Turkish (tur), but
not including data hallucination, and

e for Voro (vro) we used Estonian (est).

Family  Sub-family | Acc.
Afro-Asiatic 91.3
Semitic 90.1

Algic 449
Turkic 83.3
Austronesian 82.0

Gr. Ctr.

Philippines 80.4

Dravidian 85.0
IndoEuropean 87.5
Germanic 84.3

Romance 96.3

Iranian 86.2

Indic 81.5

Niger-Congo 97.7
Bantoid 97.3

Kwa 99.5

Oto-Manguean 82.4
Zapotecan | 73.9

Otomian 97.2

Sino-Tibetan 84.7
Siouan 89.7
Songhay 100.0
Southern Daly 70.3
Uralic 86.7
Mordvin 92.8

Finnic 81.9

Permic 96.7

Uto-Aztecan 79.0
Tungusic 55.0

Table 2: Results per language Family/Genus.

Multiple-Language Cross-Lingual Transfer
We submitted systems with unique transfer
language combinations for extremely low-resource
languages for which several very related languages
were available (all systems also included halluci-
nated data in the test language). Specifically:

o for Ingrian (izh) we used Estonian (est), Votic
(vot), and a random sample (20,000 instances)
from Finnish (fin) data,

o for Votic (vot) we used Estonian (est), Ingrian
(izh), and a random sample (20,000 instances)
from Finnish (fin) data,

e for Urdu (urd) we used Hindi (hin) and Ben-
gali (ben),



for Bashkir (bad) we used Turkish (tur),
Kazakh (kaz), and Kyrgyz (kir),

for Crimean Tatar (crh) we used Turkish (tur),
Kazakh (kaz), and Kyrgyz (kir),

for Kazakh (kaz) we used Turkish (tur),
Bashkir (bad), and Kyrgyz (kir),

for Kyrgyz (kir) we used Turkish (tur),
Bashkir (bad), and Kazakh (kaz),

for Uighur (uig) we used Turkish (tur) and
Uzbek (uzb), and

for Ludian (Iud) we used 20,000 random sam-
ples from Karelian (krl) and Veps (vep).

Romanization for Different Scripts Last, we
experimented with cross-lingual transfer and
transliteration of related languages written in dif-
ferent script. The motivation lies in the observation
made by Anastasopoulos and Neubig (2019) that
often cross-lingual transfer results in smaller im-
provements if the transfer and the test language
do not share the same script, even if the lan-
guages are related. They bring Arabic—Maltese
and Kurmanji—Sorani as possible examples. In
concurrent work (Murikinati et al., 2020) we exper-
imented with transliterating the transfer language
into the test language’s script, with encouraging re-
sults in low-resource settings. Alternatively, if the
training languages use the latin script but the test
language does not, we found that that by romaniz-
ing the test language training data and concatenat-
ing them as another language (along with the data
in the original script) also helped. We applied these
strategies on the following language pairs.

Transliterating a transfer language into the test
language’s script:

1. for Maltese (mlt) we used Italian (ita) and

romanized Hebrew (heb),

for Oromo (orm) we used romanized Arabic

(ara) and romanized Hebrew (heb), and

. for Bengali (ben) we used Sanskrit (san),
Hindi (hin), and Sanskrit transliterated into
the Bengali script using the Indic NLP li-
brary? (Kunchukuttan, 2020).

2.

Romanizing the test language training data and
training with both romanized and original, along
with more romanized, related languages:

1. for Classical Syriac (syc) we used romanized
Arabic (ara) and romanized Hebrew (heb), as

https://github.com/anoopkunchukuttan/
indic_nlp_library
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well as romanized Classical Syriac (Classical

Syriac originally uses a distinct script),

for Pashto (pus) we used romanized Farsi (fas)

and romanized Pashto, while

. for Tajik (tgk) we used romanized Farsi (fas)
and romanized Tajik.

3 Results

Table 1 lists the accuracy of our submitted sys-
tem in every language. We also report results per
language family and genus in Table 2, to further
facilitate an equitable evaluation across language
families. Our system achieves a macro-averaged ac-
curacy of 86.6% with a standard deviation of 14.3.
Even though it does not use self-attention and we
did not tune any hyper-parameters, our system still
achieved competitive performance, tying for first in
25 of the 90 total languages (it still however does
not outperform the best baseline system (Wu et al.,
2020)).

These include languages that were generally
easy for all systems, such as the Austronesian and
the Niger-Congo ones. However, they also include
the extremely low-resource languages like Ludian
(lud), Voro (vro), and Middle Low German (gml),
where we suspect that our system performed en par
with the more sophisticated (and we suspect, tuned)
systems due to our informed selection of languages
for cross-lingual transfer.

The two languages where our system performs
the worst are Algic (Cree) and Tungusic (Evenki).
We suspect this is due to the fact that the data hal-
lucination technique, which is crucial for such low
resource settings, is not appropriate for capturing
the vowel harmony of Evenki along with its agglu-
tinating morphological patterns — the hallucinated
data do not follow these patterns and hence do not
guide the model towards learning them. As for
Cree, we suspect that the problem lies again in the
data hallucination process: the polysynthetic and
fusional nature of Cree verb inflected forms is too
complicated to be modeled by the simple character-
level alignment model which is the first step for
hallucination.

4 Conclusion and Future Work

The performance of our system in the 2020 SIG-
MORPHON Shared Task leaves many questions
unanswered and several avenues to explore in fu-
ture work. Regarding the choice of languages to
use for cross-lingual transfer, we will further in-



vestigate the use of automatic suggestion systems
such as the one of Lin et al. (2019). With re-
gards to modeling, we will update our model to use
sparsemax (Martins and Astudillo, 2016), which
can facilitate exact search and hopefully lead to
better results (Peters and Martins, 2019).

As we anticipate and hope the shared task and
the whole community will become more multilin-
gual in the future, in the future we will employ
the language/task selection method of Xia et al.
(2020), which will allow us to tune the systems in a
small subset of languages that will generalize well
in all others. Similarly, we will employ more so-
phisticated techniques for learning in multilingual
settings, such as differential data selection (Wang
etal., 2019, 2020) which will allow us to optimize a
single model to multiple model objectives (namely,
each target language).
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Abstract

In this paper, we describe our three submis-
sions to the SIGMORPHON 2020 shared task
1 on grapheme-to-phoneme conversion for 15
languages. We experimented with a single
multilingual Transformer model. We observed
that the multilingual model achieves results
on par with our separately trained monolin-
gual models and is even able to avoid a few
of the errors made by the monolingual models.

1 Introduction

Grapheme-to-phoneme conversion is the task of
predicting the phonemic representation for a given
orthographic word, where a phoneme is the small-
est unit of sound which can distinguish one word
from another. In many languages, some phonemes
have different realizations depending on their con-
text, and these variants are called allophones.
While the task is about predicting phonemes and
not allophones, in fact most datasets (e.g., the
datasets for Hungarian, Bulgarian, and Armenian)
also contain allophones. However, since the distri-
bution of allophones conditioned on the context is
learnable, this is not an issue.

The shared task training data consists of 15 lan-
guages which have diverse phonologies, ranging
from tonal languages to languages with glottalized
consonants, and they are written in eight different
writing systems. The data comes from the English
version of Wiktionary. Each training set contains
3600 words, and each development and test set
contains 450 words. The official metrics for the
task are Word Error Rate (WER) and Phoneme Er-
ror Rate (PER).

A multilingual approach for grapheme-to-
phoneme conversion has been explored by Milde
et al. (2017). They propose a sequence-to-
sequence multilingual model that benefits from
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training on additional phonetic representations for
the same language (which was not permitted in
our shared task).

The Transformer (Vaswani et al. 2017) with
its attention mechanism has been applied very
successfully to machine translation tasks, and it
was also used for grapheme-to-phoneme conver-
sion. Yolchuyeva et al. (2019) suggested using
a Transformer-based approach for grapheme-to-
phoneme conversion and Yu et al. (2020) proposed
a multilingual Transformer model for languages
with different writing systems by employing byte-
level input representation.

In our submission to the shared task, we explore
the performance of a multilingual Transformer
model with augmented input representation which
can transduce a word from any language present
in the training data into its IPA representation.

2 Linguistic Background
21 TPA

The phonemic representation in this task uses the
International Phonetic Alphabet (IPA). Interest-
ingly, there is an issue with IPA which is lack of
“orthography”. This might seem surprising given
that the IPA aims at representing the pronunciation
of words with more rigor than typical orthogra-
phies. However, different levels of depth of anal-
ysis are possible with IPA, and this makes incon-
sistent use of symbols among annotators unavoid-
able. To give an example, Bulgarian exhibits a
voiceless coronal plosive /t/~/t/. The phoneme is
articulated as a dental plosive in Bulgarian. Some-
what randomly, the IPA provides an atomic sym-
bol for the voiceless alveolar plosive (/t/), but only
a composed symbol for the voiceless dental plo-
sive (/t/). In principle, /t/ would be the correct
representation for the phoneme in question, but
since there is no phonemic contrast between den-
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tal and alveolar articulation in Bulgarian, a sim-
ple /t/ suffices to represent the voiceless coronal
plosive phoneme in Bulgarian. Hence, as is ex-
pected, the phoneme is not transcribed consistently
in the training data; while /t/ is used 1588 times,/t/
is applied 681 times. Similar issues are found
frequently for other phonemes, and for other lan-
guages.

2.2 Languages

In our monolingual baseline models trained with
the Transformer baseline published by the task or-
ganizers, the WER (PER) ranged from only 3.78
(0.66) for Hungarian up to 40.00 (16.38) for Ko-
rean. Seeing these huge differences in perfor-
mance, it seemed worth analyzing the difficulties
faced by the model for the three languages with
the worst WER, viz. Korean (40.00), Bulgarian
(30.67), and Georgian (28.44).

221 Georgian

We were particularly surprised to see Georgian
among the seemingly most difficult languages.
Georgian has a fully phonemic alphabet; each
character represents exactly one phoneme, and
each phoneme is represented by exactly one char-
acter (Hewitt 1995). Grapheme-to-phoneme con-
version (and phoneme-to-grapheme conversion)
for Georgian is thus a trivial task and can be done
in principle with 100% accuracy using a simple 1-
to-1 look-up table.

We actually implemented this look-up table, and
this allowed us to identify and quantify the is-
sues in the Georgian dataset. We found that there
are three phonemes that are each inconsistently
represented by two IPA symbols (and distributed
roughly 50/50): i~1; x~y; y~g. The difference be-
tween these symbols is neither phonemic nor allo-
phonic. Rather, it is caused by different annotators
using different representation for a given phoneme,
in line with the orthographic weakness of the IPA
outlined above in Section 2.1.

We reported these data inconsistencies,! and we
prepared a consistent dataset produced with our
look-up table. Together with the organizers, we
planned to update the Georgian data directly on
Wiktionary and then re-retrieve the training data
from there. Unfortunately, bulk uploading to Wik-
tionary is not trivial, and it was not possible for
us to update the data before the task deadline. For

"https://github. com/sigmorphon/2020/issues/8
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the current task, it means that the WER cannot be
substantially reduced for Georgian due to these in-
consistencies.

2.2.2 Bulgarian

Bulgarian exhibits vowel reduction in unstressed
syllables (similar phenomena are found, for in-
stance, in English, German, and Russian), which
leads to many allophones for vowels in unstressed
positions (Leafgren 2020). These allophones
should not be present in a purely phonemic tran-
scription, however they are in the given training
set. Furthermore, the pronunciation of a vowel in
Bulgarian depends on the position of stress, yet
Bulgarian word stress can fall on any syllable and
is not completely predictable. We experimented
with a self-written tool which predicts the stress
position in Bulgarian based on heuristics, however
the WER could only be decreased marginally us-
ing a stress-annotated training set, which is why
we abandoned this approach. Similar issues like
the ones discussed above for Georgian are present
in the Bulgarian training data, and these were also
discussed on GitHub.? However, these issues are
somewhat more difficult to solve automatically
compared to Georgian.

2.2.3 Korean

Korean uses an alphabet that provides a symbol for
each consonant and for each vowel, yet it groups
symbols into square syllable blocks, which makes
it look somewhat close to Chinese and Japanese
writing, although it is much simpler. By default,
Unicode encodes Korean in syllable blocks and
not as single sounds, which results in a charac-
ter set comprising thousands of characters. Luck-
ily, Unicode also provides code points for the
single-sound characters (called Jamo), and sylla-
ble characters can easily be decomposed to single-
sound characters.> We used hangul-jamo® for
this decomposition. To give an example of the de-
composition, AT g a m/, is decomposed to
71 } 7} & . With this approach, we were able to
decrease the WER and PER of our Korean baseline
Transformer model considerably: the WER was
reduced from 40.00 to 21.50, and the PER from
16.38 to 3.86. We use this preprocessing step for
Korean for all our submitted models.

"https://github.com/sigmorphon/2020/issues/9

*http://www.unicode.org/versions/Unicode8.0.
0/ch03. pdf

*https://github.com/jonghwanhyeon/
hangul-jamo



3 Approach

We trained a multilingual model which can trans-
duce a word in any of the 15 source languages
into its IPA representation. Multilingual models
can be of the types many-to-one, one-to-many, or
many-to-many. In our case, there are obviously
multiple languages on the source side. On the
target side, there is usually exactly one desired
phoneme sequence for a given source word. Su-
perficially, we thus have a many-to-one problem.
However, many character sequences exist in more
than one language. For instance, the character se-
quence <transformation> without further context
can be read as an English word or as a French word,
and its pronunciation depends on the choice of lan-
guage (/trens.for.mer. fon/ vs. /tgds.fok.ma.sjd/).
This makes it a many-to-many problem for a sub-
set of the data.

The possibility of multiple desired sequences on
the target side for a given source word makes it
necessary to annotate the source words with the
desired language. In our approach, we prefix each
source word with its two-letter ISO language code,
followed by an underscore, e.g. 'fr maison', or
'ka og@mmo'. This is similar to the approach in
Johnson et al. (2017).

A side effect of our multilingual approach is that
the size of the training data is increased from 3600
to 54000 (15 x 3600) samples. Ideally, a model
might profit from this enlarged dataset, and lan-
guages can learn from each other. Given the vari-
ous source-side writing systems and differences in
phoneme sets across languages, we expect cross-
language learning to be somewhat limited.

The multilingual approach proposed here al-
lows for language-specific preprocessing where
needed. In our case, we only used a preprocess-
ing step for Korean, as outlined above in Section
2.2.3.

3.1 Model UZH-1

For our first submission, we used the Transformer
baseline® provided by the organizers and exper-
imented with different hyperparameters. The
Transformer (Vaswani et al. 2017) is implemented
in Fairseq (Ott et al. 2019) and uses Adam
(Kingma and Ba 2015) for optimization and ReLU
as an activation function. It has 4 encoder and de-
coder layers with 4 attention heads each.

https://github.com/sigmorphon/2020/tree/
master/taskl/baselines/transformer
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In our hyperparameter tuning, we experimented
with the following values: embedding dimension
{128, 256} and hidden size {512, 1024} for both
the encoder and the decoder, batch size {256, 512,
1024}, and dropout probability {0.1, 0.2, 0.3}.
The number of epochs is limited to 400.

Our submitted model has the largest possible
values for all tuned hyperparameters: embedding
dimensions of 256, hidden sizes of 1024, a batch
size of 1024, and a dropout probability of 0.3. Due
to limitations in available computation power, fur-
ther tuning with even larger hyperparameter val-
ues was not feasible for us.

3.2 Model UZH-2

For our second submission, we added extra lan-
guage data from 6 languages not addressed in the
task, viz. English, Italian, Portuguese, Czech,
Danish, and Macedonian. Some of these lan-
guages have rather small data sets available on
Wiktionary, therefore we added only 2400 training
samples per language, and 300 development sam-
ples each, which is two thirds of the data for the
other languages.

We selected the additional languages based on
our intuition regarding whether a language might
be useful for one or more of the 15 languages in
the task. An additional restriction was the fact
that large enough data sets are available mainly
for European languages. Of the selected addi-
tional languages, some are closely related to an-
other one from the official training set (e.g., Mace-
donian to Bulgarian, or, to a lesser degree, Dan-
ish to Dutch). Others have similar phonologies
(e.g., Spanish and Greek, or Czech and Hungar-
ian). In addition, some training sets (e.g., the one
for French) contain English loanwords whose ir-
regular pronunciation might be learned from addi-
tional English data.

The data was retrieved from Wiktionary using
WikiPron (Lee et al. 2020) and sampled randomly.
We used the same model architecture and the same
hyperparameter search space for this experiment
as in UZH-1, and the final model has the same hy-
perparameter values as UZH-1.

3.3 Model UZH-3

Our third submission is an ensemble model. It
uses the predictions of UZH-1 and UZH-2, and for
each word it takes the higher probability prediction
from the two models.



4 Results

UZH-1 | UzZH2 | UZH3
WER PER|WER PER|WER PER

arm |15.56 3.29[15.78 3.52|14.89 3.17
bul |32.89 6.48/30.00 5.59(30.22 5.77

fre | 7.78 1.88| 8.00 1.80| 6.89 1.64

geo |26.44 5.00(28.00 5.11(26.22 4.97

gre |18.00 2.97(2133 3.41|18.89 3.03

hin | 6.89 1.58| 7.78 2.16| 6.00 1.43

hun | 578 1.15| 7.11 1.54| 600 1.18
ice [11.78 2.39/12.89 2.78|11.78 2.46

kor [28.67 499(29.11 4.99|28.44 4.88

lit 2733 4.69(28.44 4.84|27.11 4.61

ady |26.00 6.05|28.00 6.35(25.78 594

dut |17.78 327|21.56 3.94|18.67 3.42

ipn | 9.33 2.46| 6.00 1.58| 6.00 1.54

rum |13.33 2.96|13.78 3.11[12.00 2.59
vie | 844 291| 6.67 2.62| 622 2.46

“;avcgm 17.07 347/17.63 3.56|1634 327

Table 1: WER and PER of our 3 models for each lan-
guage and as macro-average on the official test set.

As can be seen from Table 1, our basic multi-
lingual system (UZH-1) achieved a macro-average
WER of 17.07 and a PER of 3.47 on the official
test set.

For the multilingual model with additional data
from six extra languages (UZH-2), we achieved
a macro-average WER of 17.63 and a PER of
3.56. While performance did not increase with
this approach, it also did not decrease dramatically,
which indicates that it would be possible to have
an even larger multilingual model for more than
15 languages without major performance loss.

More interestingly, even though the perfor-
mance of UZH-2 was slightly worse, the model
was able to resolve some of the errors made by
UZH-1, while at the same time introducing others.
We assume that there is indeed a cross-language
interference which can influence the result both
positively and negatively. We observed similar
behavior on the development set during our ex-
periments, which brought us to the idea of com-
bining the results of both systems to get the best
of both. Indeed, our ensemble model (UZH-3),
which takes the prediction with the higher prob-
ability from UZH-1 and UZH-2, was the best-
performing model among our submissions with a
macro-average WER of 16.34 and PER of 3.27.
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5 Conclusion

While other submissions outperformed our mod-
els, our PER for UZH-3 is only 0.51 points higher
than that of the winning model (IMS). The differ-
ence in WER is slightly higher, with an increase of
2.53 points compared to the winning model. Over-
all, this shows that a single multilingual model can
achieve competitive results even in a setting with
highly unrelated languages, by simply prefixing
each word with its language code. In future work,
we like to explore further how cross-language in-
terference in a multilingual model influences per-
formance both positively and negatively.
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Abstract

We describe the NYU-CUBoulder systems
for the SIGMORPHON 2020 Task O on ty-
pologically diverse morphological inflection
and Task 2 on unsupervised morphological
paradigm completion. The former consists
of generating morphological inflections from
a lemma and a set of morphosyntactic fea-
tures describing the target form. The latter
requires generating entire paradigms for a set
of given lemmas from raw text alone. We
model morphological inflection as a sequence-
to-sequence problem, where the input is the
sequence of the lemma’s characters with mor-
phological tags, and the output is the sequence
of the inflected form’s characters. First, we ap-
ply a transformer model to the task. Second, as
inflected forms share most characters with the
lemma, we further propose a pointer-generator
transformer model to allow easy copying of in-
put characters. Our best performing system for
Task O is placed 6th out of 23 systems. We
further use our inflection systems as subcom-
ponents of approaches for Task 2. Our best
performing system for Task 2 is the 2nd best
out of 7 submissions.

1 Introduction

In morphologically rich languages, a word’s sur-
face form reflects syntactic and semantic properties
that are expressed by the word. For example, most
English nouns have both singular and plural forms
(e.g., robot/robots, process/processes), which are
known as the inflected forms of the noun. Some lan-
guages display little inflection. In contrast, others
have many inflections per base form or lemma: a
Polish verb has nearly 100 inflected forms (Janecki,
2000) and an Archi verb has around 1.5 million
(Kibrik, 1998).

Morphological inflection is the task of, given
an input word — a lemma — together with mor-
phosyntactic features defining the target form, gen-

Katharina Kann
University of Colorado Boulder
USA

katharina.kann@colorado.edu
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Inflected form
hugged
seels

Lemma Features
hug V:PST
seel V;3:SG;PRS

Figure 1: Morphological inflection examples in En-
glish. A lemma and features are mapped to an inflected
form.

erating the indicated inflected form, cf. Figure
1. Morphological inflection is a useful tool for
many natural language processing tasks (Seeker
and Cetinoglu, 2015; Cotterell et al., 2016b), es-
pecially in morphologically rich languages where
handling inflected forms can reduce data sparsity
(Minkov et al., 2007).

The SIGMORPHON 2020 Shared Task consists
of three separate tasks. We participate in Task
0 on typologically diverse morphological inflec-
tion (Vylomova et al., 2020) and Task 2 on un-
supervised morphological paradigm completion
(Kann et al., 2020). Task 0 consists of generat-
ing morphological inflections from a lemma and
a set of morphosyntactic features describing the
target form. For this task, we implement a pointer-
generator transformer model, based on the vanilla
transformer model (Vaswani et al., 2017) and the
pointer-generator model (See et al., 2017). After
adding a copy mechanism to the transformer, it
produces a final probability distribution as a com-
bination of generating elements from its output
vocabulary and copying elements — characters in
our case — from the input. As most inflected forms
derive their characters from the source lemma, the
use of a mechanism for copying characters directly
from the lemma has proven to be effective for mor-
phological inflection generation, especially in the
low resource setting (Aharoni and Goldberg, 2017;
Makarov et al., 2017).

For our submissions, we further increase the size
of all training sets by performing multi-task train-
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ing on morphological inflection and morphological
reinflection, i.e., the task of generating inflected
forms from forms different from the lemma. For
languages with small training sets, we also perform
hallucination pretraining (Anastasopoulos and Neu-
big, 2019), where we generate pseudo training in-
stances for the task, based on suffixation and pre-
fixation rules collected from the original dataset.
For Task 2, participants are given raw text and
a source file with lemmas. The objective is to gen-
erate the complete paradigms for all lemmas. Our
systems for this task consist of a combination of
the official baseline system (Jin et al., 2020) and
our systems for Task 0. The baseline system finds
inflected forms in the text, decides on the num-
ber of inflected forms per lemma, and produces
pseudo training files for morphological inflection.
Our inflection model then learns from these and,
subsequently, generates all missing forms.

2 Related Work

SIGMORPHON and CoNLL-SIGMORPHON
shared tasks. In recent years, the SIGMOR-
PHON and CoNLL-SIGMORPHON shared tasks
have promoted research on computational mor-
phology, with a strong focus on morphological in-
flection. Research related to those shared tasks
includes Kann and Schiitze (2016b), who used
an LSTM (Hochreiter and Schmidhuber, 1997)
sequence-to-sequence model with soft attention
(Bahdanau et al., 2015) and achieved the best result
in the SIGMORPHON 2016 shared task (Kann and
Schiitze, 2016a; Cotterell et al., 2016a). Due to
the often monotonic alignment between input and
output, Aharoni and Goldberg (2017) proposed a
model with hard monotonic attention. Based on
this, Makarov et al. (2017) implemented a neural
state-transition system which also used hard mono-
tonic attention and achieved the best results for
Task 1 of the SIGMORPHON 2017 shared task. In
2018, the best results were achieved by a revised
version of the neural transducer, trained with imita-
tion learning (Makarov and Clematide, 2018). That
model learned an alignment instead of maximizing
the likelihood of gold action sequences given by a
separate aligner.

Transformers. Transformers have produced
state-of-the-art results on various tasks such as ma-
chine translation (Vaswani et al., 2017) language
modeling (Al-Rfou et al., 2019), question answer-
ing (Devlin et al., 2019) and language understand-
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ing (Devlin et al., 2019). There has been very little
work on transformers for morphological inflection,
with, to the best of our knowledge, Erdmann et al.
(2020) being the only published paper. However,
the widespread success of transformers in NLP
leads us to believe that a transformer model could
perform well on morphological inflection.

Pointer-generators. In addition to the trans-
former, the architecture of our model is also in-
spired by See et al. (2017), who used a pointer-
generator network for abstractive summarization.
Their model could choose between generating a
new element and copying an element from the input
directly to the output. This copying of words from
the source text via pointing (Vinyals et al., 2015),
improved the handling of out-of-vocabulary words.
Copy mechanisms have also been used for other
tasks, including morphological inflection (Sharma
et al., 2018). Transformers with copy mechanisms
have been used for word-level tasks (Zhao et al.,
2019), but, as far as we know, never before on the
character level.

3 SIGMORPHON 2020 Shared Task

The SIGMORPHON 2020 Shared Task is com-
posed of three tasks: Task O on typologi-
cally diverse morphological inflection (Vylomova
et al., 2020), Task 1 on multilingual grapheme-to-
phoneme conversion (Gorman et al., 2020), and
Task 2 on unsupervised morphological paradigm
completion (Kann et al., 2020). We submit systems
to Tasks O and 2.

3.1 Task 0: Typologically Diverse
Morphological Inflection

SIGMORPHON 2020 Task 0 focuses on morpho-
logical inflection in a set of typologically diverse
languages. Different languages inflect differently,
so it is not trivially clear that systems that work on
some languages also perform well on others. For
Task 0, systems need to generalize well to a large
group of languages, including languages unseen
during model development.

The task features 90 languages in total. 45 of
them are development languages, coming from five
families: Austronesian, Niger—Congo, Uralic, Oto-
Manguean, and Indo-European. The remaining 45
are surprise languages, and many of those are from
language families different from the development
languages. Some languages have very small train-
ing sets, which makes them hard to model. For



those cases, the organizers recommend a family-
based multilingual approach to exploit similarities
between related languages. While this might be
effective, we believe that using multitask training
in combination with hallucination pretraining can
give the model enough information to learn the task
well, while staying true to the specific structure of
each individual language.

3.2 Task 2: Unsupervised Morphological
Paradigm Completion

Task 2 is a novel task, designed to encourage work
on unsupervised methods for computational mor-
phology. As morphological annotations are limited
for many of the world’s languages, the study of mor-
phological generation in the low-resource setting
is of great interest (Cotterell et al., 2018). How-
ever, a different way to tackle the problem is by
creating systems that are able to use data without
annotations.

For Task 2, a tokenized Bible in each language
is given to the participants, along with a list of
lemmas. Participants should then produce com-
plete paradigms for each lemma. As slots in the
paradigm are not labeled with gold data paradigm
slot descriptions, an evaluation metric called best-
match accuracy was designed for this task. First,
this metric matches predicted paradigm slots with
gold slots in the way which leads to the highest
overall accuracy. It then evaluates the correctness
of individual inflected forms.

4 Methods

In this section, we introduce our models for Tasks
0 and 2 and describe all approaches we use, such
as multitask training, hallucination pretraining and
ensembling. The code for our models is available
online.!

4.1 Transformer

Our model is built on top of the transformer ar-
chitecture (Vaswani et al., 2017). It consists of an
encoder and a decoder, each composed of a stack
of layers. Each encoder layer consists, in turn, of a
self-attention layer, followed by a fully connected
layer. Decoder layers contain an additional inter-
attention layer between the two.

With inputs (x1, - - - , x7) being a lemma’s char-
acters followed by tags representing the mor-

'https://github.com/AssafSinger94/
sigmorphon-2020-inflection
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phosyntactic features of the target form, the en-
coder processes the input sequence and outputs hid-
den states (hy,--- , hr). At generation step t, the
decoder reads the previously generated sequence
(y1, -+ ,y1—1) to produce states (s1,---,S¢—1)-
The last decoder state s;_; is then passed through
a linear layer followed by a softmax, to generate a
probability distribution over the output vocabulary:

ey

During training, the entire target sequence
(yl, cee yTy) is input to the decoder at once, along
with a sequential mask to prevent positions from
attending to subsequent positions.

Pyocab = softmax(V's;—1 + b)

4.2 Pointer-Generator Transformer

The pointer-generator transformer allows for both
generating characters from a fixed vocabulary, as
well as copying from the source sequence via point-
ing (Vinyals et al., 2015). This is managed by pgen —
the probability of generating as opposed to copying
— which acts as a soft switch between the two ac-
tions. pgen is computed by passing a concatenation
of the decoder state s;, the previously generated
output y;—1, and a context vector ¢; through a linear
layer, followed by the sigmoid function.

Pgen = U<w[3t; Ct; yt—l] + b) 2

The context vector is computed as the weighted
sum of the encoder hidden states

T
=2
t i=1

with attention weights (af, - - - , a). For each in-
flection example, let the extended vocabulary de-
note the union of the output vocabulary, and all
characters appearing in the source lemma. We
then use pgen, Pyocab produced by the transformer,
and the attention weights of the last decoder layer
(af,---,a%) to compute a distribution over the
extended vocabulary:

t
ai hz

3)

P(C) = pgeanocab(C) + (1 - pgen)Pcopy (C)a “4)

with

Pcopy(c) = Zi:mizc ag %)

The copy distribution Peopy(c) for each character
c is the sum of attention weights over all source
positions where z; = c. Note that if ¢ is an out-of-
vocabulary (OOV) character, then Pyocap(c) is zero;
similarly, if ¢ does not appear in the source lemma,



raw grip grips V;SG;3;PRS
grip gripped  V;PST
grips grip V.LEMMA
generated  grips gripped  V;PST
gripped  grip V.LEMMA

Figure 2: English multitask training example (Task 0).

then )~ . _,aj is zero. The ability to produce
OOV characters is one of the primary advantages
of pointer-generator models; by contrast models
such as our vanilla transformer are restricted to
their pre-set vocabulary.

4.3 Multitask Training

Some languages in Task O have small training sets,
which makes them hard to model. In order to
handle that, we perform multitask training, and,
thereby, increase the amount of examples available
for training.

Morphological reinflection. Morphological re-
inflection is a generalized version of the morpho-
logical inflection task, which consists of producing
an inflected form for any given source form —i.e.,
not necessarily the lemma —, and target tag. For
example:

(hugging; V;PST) — hugged. (6)

This is a more complex task, since a model needs
to infer the underlying lemma of the source form
in order to inflect it correctly to the desired form.

Many morphological inflection datasets contain
lemmas that are converted to several inflected
forms. Treating separate instances for the same
source lemma as independent is missing an oppor-
tunity to utilize the connection between the differ-
ent inflected forms. We approach this by converting
our morphological inflection training set into one
for morphological reinflection as described in the
following.

From inflection to reinflection. Inflected forms
of the same lemma are grouped together to sets
of one or more (inflected form, morphological fea-
tures) pairs. Then, for each set, we create new train-
ing instances by inflecting all forms to one another,
as shown in Figure 2. We also let the model inflect
forms back to the lemma by adding the lemma as
one of the inflected forms, marked with the synthet-
ically generated LEMMA tag. The new training
set fully utilizes the connections between different
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Hyperparameter Value
Embedding dimension 256
Encoder layers 4
Decoder layers 4
Encoder hidden dimension 1024
Decoder hidden dimension 1024
Attention heads 4

Table 1: The hyperparameters used in our inflection
models for both Task 0 and Task 2.

forms in the paradigm, and, in that way, provides
more training instances to our model.

4.4 Hallucination Pretraining

Another effective tool to improve training in the
low-resource setting is data hallucination (Anas-
tasopoulos and Neubig, 2019). Using hallucina-
tion, new pseudo-instances are generated for train-
ing, based on suffixation and prefixation rules col-
lected from the original dataset. For languages with
less than 1000 training instances, we pretrain our
models on a hallucinated training set consisting of
10,000 instances, before training on the multitask
training set.

4.5 Submissions and Ensembling Strategies

We submit 4 different systems for Task 0. NYU-
CUBoulder-2 consists of one pointer-generator
transformer model, and, for NYU-CUBoulder-4,
we train one vanilla transformer. Those two are our
simplest systems and can be seen as baselines for
our other submissions.

Because of the effects of random initialization
in non-convex objective functions, we further use
ensembling in combination with both architectures:
NYU-CUBoulder-1 is an ensemble of three pointer-
generator transformers, and NYU-CUBoulder-3 is
an ensemble of five pointer-generator transformers.
The final decision is made by majority voting. In
case of a tie, the answer is chosen randomly among
the most frequent predictions. Models participating
in the ensembles are from different epochs during
the same training run.

As previously stated, all systems are trained on
the augmented multitask training sets, and systems
trained on languages with less than 1000 train-
ing instances were pretrained on the hallucinated
datasets.



4.6 Task 2: Model description

Our systems for Task 2 consist of a combination of
the official baseline system (Jin et al., 2020) and our
inflection systems for Task 0. The system is given
raw text and a source file with lemmas, and gener-
ates the complete paradigm of each lemma. The
baseline system finds inflected forms in the text, de-
cides on the number of inflected forms per lemma,
and produces pseudo training files for morphologi-
cal inflection. Any inflections that the system has
not found in the raw text are given as test instances.
Our inflection model then learns from the files and,
subsequently, generates all missing forms. We use
the pointer-generator and vanilla transformers as
our inflection models.

For Task 2, we use ensembling for all submis-
sions. NYU-CUBoulder-1 is an ensemble of six
pointer-generator transformers, NYU-CUBoulder-
2 is an ensemble of six vanilla transformers, and
NYU-CUBoulder-3 is an ensemble of all twelve
models. For all models in both tasks, we use the
hyperparameters described in Table 1.

5 Experiments

5.1 Task0

Data. The dataset for Task O covers 90 languages
in total: 45 development languages and 45 surprise
languages. For details on the official dataset please
refer to Vylomova et al. (2020).

Baselines. This year, several baselines are pro-
vided for the task. The first system has also been
used as a baseline in previous shared tasks on mor-
phological reinflection (Cotterell et al., 2017, 2018).
It is a non-neural system which first scans the
dataset to extract suffix- or prefix-based lemma-
to-form transformations. Then, based on the mor-
phological tag at inference time, it applies the
most frequent suitable transformation to an input
lemma to yield the output form (Cotterell et al.,
2017). The other two baselines are neural models.
One is a transformer (Vaswani et al., 2017; Wu
et al., 2020), and the second one is a hard-attention
model (Wu and Cotterell, 2019), which enforces
strict monotonicity and learns a latent alignment
while learning to transduce. To account for the
low-resource settings for some languages, the or-
ganizers also employ two additional methods: con-
structing a multilingual model trained for all lan-
guages belonging to each language family (Kann
etal., 2017), and data augmentation using halluci-
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Sub-1 | Sub-2 | Sub-3 | Sub-4 | Base
Development Set

Low 88.71 | 88.02 | 84.90 | 84.07 -

Other 90.46 | 90.63 | 90.20 | 90.94 -

All 90.06 | 90.02 | 88.96 | 89.34 -
Test Set

Low 84.8 | 84.8| 855]| 83.9]89.77

Other 89.7| 89.8| 89.8| 90.2|92.43

All 88.6 | 88.7| 88.8| 88.8|91.81

Table 2: Macro-averaged results over all languages
on the official development and test sets for Task O.
Low=languages with less than 1000 train instances,
Other=all other languages, All=all languages.

nation (Anastasopoulos and Neubig, 2019). Four
model types are trained for each neural architec-
ture: a plain model, a family-multilingual model, a
data augmented model, and an augmented family-
multilingual model. Overall, there are nine baseline
systems for each language. We compare our mod-
els to an oracle baseline by choosing the best score
over all baseline systems for each language.

Results. Our results for Task 0 are displayed in
Table 2. All four systems produce relatively sim-
ilar results. NYU-CUBoulder-3, our five-model
ensemble, performs best overall with 88.8% accu-
racy on average. We further look at the results for
low-resource (< 1000 training examples) and high-
resource (>= 1000 training examples) languages
separately. This way, we are able to see the ad-
vantage of the pointer-generator transformer in the
low-resource setting, where all pointer-generator
systems achieve an at least 0.9% higher accu-
racy than the vanilla transformer model. How-
ever, in the setting where training data is abun-
dant, the effect of the copy mechanism vanishes, as
NYU-CUBoulder-4 — our only vanilla transformer
— achieved the best results for our high-resource
languages.

5.2 Task2

Data. For Task 2, a tokenized Bible in each lan-
guage is given to the participants, along with a list
of lemmas. Participants are required to construct
the paradigms for all given lemmas.

The languages for Task 2 are again divided into
development and test languages. Development lan-
guages are available for model development and
hyperparameter tuning, but are not used during the
final evaluation. The test languages are used for



System Baseline 1 Baseline 2 Sub-1 Sub-2 Sub-3
Test Set

slots macro | slots macro | slots macro | slots macro | slots macro
Basque 30 0.0006 | 27 0.0006 | 30 0.0005 | 30 0.0005 | 30 0.0007
Bulgarian 35 0.283 34 0.3169 | 35 0.2769 | 35 0.2894 | 35 0.2789
English 4 0.656 | 4 0.662 | 4 0502 | 4 0528 |4 0.512
Finnish 21 0.0533 | 21 0.055 | 21 0.0536 | 21 0.0547 | 21 0.0535
German 9 0.2835 | 9 0.29 9 0273 |9 0.2735 | 9 0.2735
Kannada 172 0.1549 | 172 0.1512 | 172 0.111 172 0.1116 | 172  0.111
Navajo 3 0.0323 | 3 0.0327 | 3 0.004 |3 0.0043 | 3 0.0043
Spanish 29 0.2296 | 29 0.2367 | 29 0.2039 | 29 0.2056 | 29 0.203
Turkish 104 0.1421 | 104 0.1553 | 104 0.1488 | 104 0.1539 | 104 0.1513
All 0.2039 0.2112 0.1749 0.1802 0.1765

Table 3: Results for all test languages on the official test sets for Task 2.

evaluation only, and do not have development sets.
The development languages are: Maltese, Persian,
Portuguese, Russian, Swedish. The test languages
are: Basque, Bulgarian, English, Finnish, German,
Kannada, Navajo, Spanish and Turkish.

Baselines. The baseline system for the task is
composed of four components, eventually produc-
ing morphological paradigms (Jin et al., 2020). The
first three modules perform edit tree (Chrupala,
2020) retrieval, additional lemma retrieval from the
corpus, and paradigm size discovery, using distri-
butional information. After the first three steps,
pseudo training and test files for morphological in-
flection are produced. Finally, the non-neural Task
0 baseline system (Cotterell et al., 2017) or the neu-
ral transducer by Makarov and Clematide (2018)
are used to create missing inflected forms.

Results. Systems for Task 2 are evaluated using
macro-averaged best-match accuracy (Jin et al.,
2020). Results are shown in in Table 3. All three
systems produce relatively similar results. NYU-
CUBoulder-2, our vanilla transformer ensemble,
performed slightly better overall with an average
best-match accuracy of 18.02%. Since our system
is close to the baseline models, it performs simi-
larly, achieving slightly worse results. For Basque,
our all-round ensemble NYU-CUBoulder-2 out-
performed both baselines with a best-match accu-
racy of 00.07%, achieving the highest result in the
shared task.

5.3 Low-resource Setting

As most inflected forms derive their characters
from the source lemma, the use of a mechanism
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for copying characters directly from the lemma
has proven to be effective for morphological inflec-
tion generation, especially in the low-resource set-
ting (Aharoni and Goldberg, 2017; Makarov et al.,
2017). As all Task 0 datasets are fairly large, we
further design a low-resource experiment to inves-
tigate the effectiveness of our model.

Data. We simulate a low-resource setting by sam-
pling 100 instances from all languages that we
already consider low-resource, i.e., all languages
with less than 1000 training instances. We then
keep their development and test sets unchanged.
Overall, we perform this experiment on 21 lan-
guages.

Experimental setup. We train a pointer-
generator transformer and a vanilla transformer on
the modified datasets to examine the effects of the
copy mechanism. We keep the hyperparameters
unchanged, i.e., they are as mentioned in Table 1.
We use a majority-vote ensemble consisting of 5
individual models for each architecture.

Baseline. We additionally train the neural trans-
ducer by Makarov and Clematide (2018), which
has achieved the best results for the 2018 shared
task in the low-resource setting (Cotterell et al.,

Trm Trm-PG Baseline
63.06 67.61 70.06

System
All

Table 4: Results on the official development data
for our low-resource experiment. Trm=Vanilla trans-
former, Trm-PG=Pointer-generator transformer, Base-
line=neural transducer by Makarov and Clematide
(2018).



Model: 11231415
Copy v |V v
Multitask Train v v v
Hallucination VIV IiVv|V

Table 5: System components for the ablation study for
Task 0. Each model is a transformer which contains a
combination of the following components: copy mech-
anism, multitask training and hallucination pretraining.

2018). The neural transducer uses hard monotonic
attention (Aharoni and Goldberg, 2017) and trans-
duces the lemma into the inflected form by a se-
quence of explicit edit operations. It is trained
with an imitation learning method (Makarov and
Clematide, 2018). We use this model as a reference
for the state of the art in the low-resource setting.

Results. As seen in Table 4, for the low-resource
dataset, the pointer-generator transformer clearly
outperforms the vanilla transformer by an average
accuracy of 4.46%. For some languages, such as
Chichicapan Zapotec, the difference is up to 14%.
While the neural transducer achieves a higher accu-
racy, our model performs only 2.45% worse than
this state-of-the-art model.”> We are also able to ob-
serve the use of the copy mechanism for copying of
OOV characters in the test sets of some languages.

6 Ablation Studies

Our systems use three components on top of the
vanilla transformer: a copy mechanism, multitask
training and hallucination pretraining. We further
perform an ablation study to measure the contri-
bution of each component to the overall system
performance. For this, we additionally train five
different systems with different combinations of
components. A description of which component
is used in which system for this ablation study is
shown in Table 5.

6.1 Results

Copy mechanism. Comparing models 2 and 4,
which are both trained on the original dataset, pre-
trained with hallucination and differ only by the
use of the copy mechanism, we are able to see that
adding this component slightly improves perfor-
mance by 0.06—0.16%. When comparing models 1
and 3, the copy mechanism decreases performance
slightly by 0.3% for the high-resource languages

2We could probably obtain better results with appropriate
hyperparameter tuning.
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Model: 1 | 2 | 3 | 4 | 5
Development Set

Low 88.20 | 90.00 | 87.52 | 89.84 | 86.35

Other  90.63 | 92.66 | 90.93 | 92.60 | 90.63

All 90.02 | 92.04 | 90.13 | 91.96 | 89.63

Table 6: Ablation study for Task 0; development set
results, averaged over all languages. Low=languages
with less than 1000 train instances, Other=all other lan-
guages, All=all languages.

and 0.11% overall, but increases performance for
low-resource languages by 0.68%.

Multitask training. Unlike the copy mechanism,
multitask training actually consistently decreases
the performance of the models. Looking at mod-
els 1 and 2, training the pointer-generator trans-
former on the multitask dataset decreases accuracy
by 1.8 — 2.03% for all three language groups. The
same happens for the vanilla transformer with an
accuracy decrease of 1.67 — 2.32%. A possible ex-
planation are the relatively large training sets pro-
vided for the shared task, as this method is more
suitable for the low-resource setting.

Hallucination pretraining. In order to exam-
ine the effect of hallucination pretraining on our
submitted models, we now compare the pointer-
generator transformers trained on the multitask data
with and without hallucination pretraining (models
1 and 5). Hallucination pretraining shows to be
helpful: it increases the accuracy on low-resource
languages by 1.85%. The performance on the high-
resource languages is necessarily the same, as only
models for low-resource languages are actually pre-
trained.

7 Conclusion

We presented the NYU-CUBoulder submissions
for SIGMORPHON 2020 Task 0 and Task 2.

We developed morphological inflection models,
based on a transformer and a new model for the
task, a pointer-generator transformer, which is a
transformer-analogue of a pointer-generator model.
For Task 0, we further added multitask training
and hallucination pretraining. For Task 2, we com-
bined our inflection models with additional compo-
nents from the provided baseline to obtain a fully
functional system for unsupervised morphological
paradigm completion.

We performed an ablation study to examine the



effects of all components of our inflection system.
Finally, we designed a low-resource experiment
to show that using the copy mechanism on top of
the vanilla transformer is beneficial if training sets
are small, and achieved results close to a state-
of-the-art model for low-resource morphological
inflection.
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Abstract

In this paper, we present the systems of the
University of Stuttgart IMS and the Univer-
sity of Colorado Boulder (IMS-CUBoulder)
for SIGMORPHON 2020 Task 2 on unsu-
pervised morphological paradigm completion
(Kann et al., 2020). The task consists of gen-
erating the morphological paradigms of a set
of lemmas, given only the lemmas themselves
and unlabeled text. Our proposed system is
a modified version of the baseline introduced
together with the task. In particular, we ex-
periment with substituting the inflection gen-
eration component with an LSTM sequence-
to-sequence model and an LSTM pointer-
generator network. Our pointer-generator sys-
tem obtains the best score of all seven submit-
ted systems on average over all languages, and
outperforms the official baseline, which was
best overall, on Bulgarian and Kannada.

1 Introduction

In recent years, a lot of progress has been made on
the task of morphological inflection, which consists
of generating an inflected word, given a lemma
and a list of morphological features (Kann and
Schiitze, 2017; Makarov and Clematide, 2018; Cot-
terell et al., 2016, 2017, 2018; McCarthy et al.,
2019). The systems developed for this task learn
to model inflection in morphologically complex
languages in a supervised fashion.

However, not all languages have annotated data
available. For the 2018 SIGMORPHON shared
task (Cotterell et al., 2018), data for 103 unique
languages has been provided. Even this highly mul-
tilingual dataset is just covering 1.61% of the 6359
languages' that exist in the world (Lewis, 2009).
The unsupervised morphological paradigm com-
pletion task (Jin et al., 2020) aims at generating

'The number of languages can vary depending on the
classification schema used.
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Figure 1: Partial Portuguese development examples.
The input is a list of lemmas, and the output is a list
of all inflected forms of each lemma. In this exam-
ple, unnamed paradigm slots correspond to the fol-
lowing UniMorph features: 1=V.PTCP;FEM;PL;PST,
2=V.PTCP;FEM;SG;PST, 3=V.PTCP;MASC;PL;PST,
4=V.PTCP;MASC;SG;PST.

inflections — more specifically all inflected forms,
i.e., the entire paradigms, of given lemmas — with-
out any explicit morphological information during
training. A system that is able to solve this problem
can generate morphological resources for most of
the world’s languages easily. This motivates us to
participate in the SIGMORPHON 2020 shared task
on unsupervised morphological paradigm comple-
tion (Kann et al., 2020).

The task, however, is challenging: As the num-
ber of inflected forms per lemma is unknown a
priori, an unsupervised morphological paradigm
completion system needs to detect the paradigm
size from raw text. Since the names of morphologi-
cal features expressed in a language are not known
if there is no supervision, a system should mark
which inflections correspond to the same morpho-
logical features across lemmas, but needs to do so
without using names, cf. Figure 1. For the shared

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 99-105
Online, July 10, 2020. ©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17
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task, no external resources such as pretrained mod-
els, annotated data, or even additional monolingual
text can be used. The same holds true for multilin-
gual models.

We submit two systems, which are both modi-
fications of the official shared task baseline. The
latter is a pipeline system, which performs four
steps: edit tree retrieval, additional lemma retrieval,
paradigm size discovery, and inflection generation
(Jin et al., 2020). We experiment with substitut-
ing the original generation component, which is
either a simple non-neural system (Cotterell et al.,
2017) or a transducer-based hard-attention model
(Makarov and Clematide, 2018) with an LSTM
encoder-decoder architecture with attention (Bah-
danau et al., 2015) — IMS-CUB1- and a pointer-
generator network (See et al., 2017) — IMS-CUB2.
IMS-CUB?2 achieves the best results of all submit-
ted systems, outperforming the second best sys-
tem by 2.07% macro-averaged best-match accu-
racy (BMAcc; Jin et al., 2020), when averaged
over all languages. However, we underperform the
baseline system, which performs 1.03% BMAcc
better than IMS-CUB2. Looking at individual lan-
guages, ITMS—CUB2 obtains the best results overall
for Bulgarian and Kannada.

The findings from our work on the shared task
are as follows: i) the copy capabilities of a pointer-
generator network are useful in this setup; and ii)
unsupervised morphological paradigm completion
is a challenging task: no submitted system outper-
forms the baselines.

2 Related Work

Unsupervised methods have shown to be effec-
tive for morphological surface segmentation. LIN-
GUISTICA (Goldsmith, 2001) and MORFESSOR
(Creutz, 2003; Creutz and Lagus, 2007; Poon et al.,
2009) are two unsupervised systems for the task.

In the realm of morphological generation,
Yarowsky and Wicentowski (2000) worked on a
task which was similar to unsupervised morpholog-
ical paradigm completion, but required additional
knowledge (e.g., a list of morphemes). Dreyer and
Eisner (2011) used a set of seed paradigms to train a
paradigm completion model. Ahlberg et al. (2015)
and Hulden et al. (2014) also relied on information
about the paradigms in the language. Erdmann et al.
(2020) proposed a system for a task similar to this
shared task.

Learning to generate morphological paradigms
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Language | Training Development Test
Basque 85 16 499
Bulgarian 1609 441 2874
English 343 83 302
Finnish 2306 522 1789
German 3940 999 667
Kannada 832 211 2854
Navajo 17 4 279
Spanish 1940 494 2506
Turkish 3095 787 8502

Table 1: Number of instances retrieved by steps 1 to 3
in our pipeline, which are used for training and devel-
opment of our inflection generation components. The
test set contains the lemma and paradigm slot for forms
that need to be generated.

in a fully supervised way is the more common
approach. Methods include Durrett and DeNero
(2013), Nicolai et al. (2015), and Kann and Schiitze
(2018). Supervised morphological inflection has
further gained popularity through previous SIG-
MORPHON and CoNLL-SIGMORPHON shared
tasks on the topic (Cotterell et al., 2016, 2017,
2018; McCarthy et al., 2019). The systems pro-
posed for these shared tasks have a special rel-
evance for our work, as we investigate the per-
formance of morphological inflection components
based on Kann and Schiitze (2016a,b) and Sharma
et al. (2018) within a pipeline for unsupervised
morphological paradigm completion.

3 System Description

In this section, we introduce our pipeline system for
unsupervised morphological paradigm completion.
First, we describe the baseline system, since we
rely on some of its components. Then, we describe
our morphological inflection models.

3.1 The Shared Task Baseline

For the initial steps of our pipeline, we employ the
first three components of the baseline (Jin et al.,
2020), cf. Figure 2, which we describe in this
subsection. We use the official implementation.”

Retrieval of relevant edit trees. This compo-
nent (cf. Figure 2.1) identifies words in the mono-
lingual corpus that could belong to a given lemma’s
paradigm by computing the longest common sub-
string between the lemma and all words. Then, the

https://github.com/cai-1lw/
morpho-baseline
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Figure 2: The baseline system. This paper experiments w
are described in §3.1.

transformation from a lemma to each word poten-
tially from its paradigm is represented by edit trees
(Chrupata, 2008). Edit trees with frequencies are
below a threshold are discarded.

Retrieval of additional lemmas. To increase the
confidence that retrieved edit trees represent valid
inflections, more lemmas are needed (cf. Figure
2.2). To find those, the second component of the
system applies edit trees to potential lemmas in
the corpus. If enough potential inflected forms are
found in the corpus, a lemma is considered valid.

Paradigm size discovery. Now the system needs
to find a mapping between edit trees and paradigms
(cf. Figure 2.3). This is done based on two assump-
tions: that for each lemma a maximum of one edit
tree per paradigm slot can be found, and that each
edit tree only realizes one paradigm slot for all lem-
mas. In addition, the similarity of potential slots is
measured. With these elements, similar potential
slots are merged until the final paradigm size for a
language is being determined.

Generation. Now, that the system has a set
of lemmas and corresponding potential inflected
forms, the baseline employs a morphological in-
flection component, which learns to generate inflec-
tions from lemmas and a slot indicator, and gener-
ates missing forms (cf. Figure 2.4). We experiment
with substituting this final component.

In the remainder of this paper, we will refer to
the original baselines with the non-neural system
from Cotterell et al. (2017) and the inflection model
from Makarov and Clematide (2018) as BL.—1 and
BL-2, respectively.
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ith modifying the generation module. All components

3.2 LSTM Encoder-Decoder

We use an LSTM encoder-decoder model with at-
tention (Bahdanau et al., 2015) for our first system,
IMS—-CUBI, since it has been shown to obtain high
performance on morphological inflection (Kann
and Schiitze, 2016a). This model takes two inputs:
a sequence of characters and a sequence of mor-
phological features. It then generates the sequence
of characters of the inflected form. For the input,
we simply concatenate the paradigm slot number
and all characters.

3.3 Pointer-Generator Network

For IMS-CUB2, we use a pointer-generator net-
work (See et al., 2017).> We expect this system to
perform better than IMS—CUB1, given the pointer-
generator’s better performance on morphological
inflection in the low-resource setting (Sharma et al.,
2018). A pointer-generator network is a hybrid
between an attention-based sequence-to-sequence
model (Bahdanau et al., 2015) and a pointer net-
work (Vinyals et al., 2015).

The standard pointer-generator network consists
of a bidirectional LSTM (Hochreiter and Schmid-
huber, 1997) encoder and a unidirectional LSTM
decoder with a copy mechanism. Here, we follow
(Sharma et al., 2018) and use two separate encoders:
one for the lemma and one for the morphological
tags. The decoder then computes the probability
distribution of the output at each time step as a
weighted sum of the probability distribution over
the output vocabulary and the attention distribution
over the input characters. The weights can be seen
as the probability to generate or copy, respectively,

SWe use the following implementation:
https://github.com/abhishek0318/
conll-sigmorphon-2018



IMS—-CUB

Language 1 2-S 2=V
Basque 25.00 18.75 12.50
Bulgarian | 97.73 98.19  97.28
English 96.39 98.80  98.80
Finnish 99.04 98.47  98.85
German 9149 93.39 91.99
Kannada | 9147 92.89 91.00
Maltese 79.17  79.17  85.42
Navajo 0.00 75.00 100.00
Persian 95.56 94.81 95.56
Portuguese | 93.81 93.87 93.74
Russian 92.15 93.02 93.19
Spanish 9291 9271 93.52
Swedish | 93.48 93.69  93.27
Turkish 93.90 9530  95.68

Table 2: Accuracy of our morphological inflection com-
ponents on the development sets produced by the first
three steps in our pipeline. We list both development
and test languages.

and are computed by a feedforward network, given
the last decoder hidden state. For details, we refer
the reader to Sharma et al. (2018).

4 Experimental Setup

4.1 Data and Languages

The shared task organizers provide data for five
development languages, for which development
sets with gold solutions are given. Those languages
— Maltese, Persian, Portuguese, Russian, Swedish —
are not taken into account for the final evaluation.

The test languages, in contrast, are supposed to
be only for system evaluation and do not come with
developments sets. For those languages — Basque,
Bulgarian, English, Finnish, German, Kannada,
Navajo, Spanish, and Turkish — only a list of lem-
mas and a monolingual Bible (McCarthy et al.,
2020) are given.

4.2 Evaluation Metric

The official evaluation metric of the shared task
is BMAcc (Jin et al., 2020). Gold solutions are
obtained from UniMorph (Kirov et al., 2018). Two
versions of BMAcc exist: micro-averaged BMAcc
and macro-averaged BMAcc. In this paper, we
only report macro-averaged BMAcc, the official
shared task metric.

During the development of our morphological
generation systems, we use regular accuracy, the
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standard evaluation metric for morphological in-
flection (Cotterell et al., 2016).

4.3 Morphological Inflection Component

Morphological inflection data. We use the first
three components of the baseline model, i.e., the
ones performing edit tree retrieval, additional
lemma retrieval, and paradigm size discovery, to
create training and development data for our in-
flection models. Those datasets consist of lemma-—
inflection pairs found in the raw text, together with
a number indicating the (predicted) paradigm slot,
and are described in Table 1.

The test set for our morphological inflection sys-
tems consist of the lemma—paradigm slot pairs not
found in the corpus.

Hyperparameters. For IMS-CUBL, we use an
embedding size of 300, a hidden layer of size 100,
a batch size of 20, Adadelta (Zeiler, 2012) for op-
timization, and a learning rate of 1. For each lan-
guage, we train a system for 100 epochs, using
early stopping with a patience of 10 epochs.

For IMS-CUB2, we follow two different ap-
proaches. The first is to use a single hyperparame-
ter configuration for all languages (IMS-CUB2-3).
The second consists of using a variable setup de-
pending on the training set size (IMS-CUB2-V).
For IMS—-CUB2-S, we use an embedding size of
300, a hidden layer size of 100, a dropout rate of
0.3, and train for 60 epochs with an early-stopping
patience of 10 epochs. We further use an Adam
(Kingma and Ba, 2014) optimizer with an initial
learning rate of 0.001.

For IMS—-CUB2-V, we use the following hyper-
parameters for training set size 1"

e 7" < 101: an embedding size of 100, a
dropout coefficient of 0.5, 300 epochs of train-
ing, and an early-stopping patience of 100;

e 100 < T < 501: an embedding size of 100, a
dropout coefficient of 0.5, 80 training epochs,
and an early-stopping patience of 20;

e 500 < T': the same hyperparameters as for
IMS-CUB2-S.

For ITMS—-CUBZ2, we select the best performing sys-
tem (between IMS—CUB2-S and IMS—-CUB2-V)
as our final model. The models are evaluated on
the morphological inflection task development set
using accuracy. All scores are shown in Table 2.



BL KU-CST IMS-CUB NYU-CUB
Language 1 2 1 2 1 2 1 2 3
Basque 0.06 0.06 | 0.02 0.01 0.04 00.06 0.05 0.05 0.07
Bulgarian | 28.30 31.69 | 2.99  4.15 | 27.22 3211 | 27.69 2894 27.89
English 65.60 66.20 | 3.53 17.29 | 47.80 61.00 | 50.20 52.80 51.20
Finnish 05.33 5.50 | 0.39 208 | 0490 0538 | 536 547 0535
German 28.35 29.00 | 0.70 498 | 24.60 28.35 | 27.30 27.35 27.35
Kannada | 1549 15.12 | 4.27 1.69 | 10.50 15.65 | 11.10 11.16 11.10
Navajo 3.23 3.27 | 0.13 020 | 033 01.17 | 040 043 0.43
Spanish 2296 23.67 | 3.52 10.84 | 19.50 22.34 | 20.39 20.56 20.30
Turkish 1421 15.53 | 0.11 0.71 | 13.54 1473 | 1488 15.39 15.13
Average 20.39 2112 | 1.74 04.66 | 1649 20.09 | 1749 18.02 17.65

Table 3: Final performance (macro-average BMAcc in percentages) of all systems on all test languages. Best
scores overall are in bold, and best scores of submitted systems are underlined.

4.4 Results

Table 3 shows the official test set results for
IMS-CUB1 and IMS-CUB2, compared to the of-
ficial baselines and all other submitted systems.

Our best system, TMS—-CUBZ2, achieves the high-
est scores of all submitted systems (i.e., exclud-
ing the baselines), outperforming the second best
submission by 2.07% BMAcc. However, BL-1
and BL—2 outperform IMS-CUB2 by 1.03% and
0.3%, respectively. Looking at the results for indi-
vidual languages, IMS—CUB2 obtains the highest
performance overall for Bulgarian (difference to
the second best system 0.42%) and Kannada (dif-
ference to the second best system 0.53%). Com-
paring our two submissions, IMS—-CUB1 underper-
forms IMS-CUB2 by 3.6%, showing that vanilla
sequence-to-sequence models are not optimally
suited for the task. We hypothesize that this could
be due to the amount or the diversity of the gener-
ated morphological inflection training files.

As our systems rely on the output of the previous
3 steps of the baseline, only few training examples
were available for Basque and Navajo: 85 and 17,
respectively. Probably at least partially due to this
fact, i.e., due to finding patterns in the raw text
corpus being difficult, all systems obtain their low-
est scores on these two languages. However, even
though Finnish has 2306 training instances for mor-
phological inflection, our best system surprisingly
only reaches 5.38% BMAcc. The same happens
in Kannada and Turkish: the inflection training set
is relatively large, but the overall performance on
unsupervised morphological paradigm completion
is low. On the contrary, even though English has
a relatively small training set (343 examples), the
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performance of IMS-CUB?2 is highest for this lan-
guage, with 66.20% BMAcc. We think that the
quality of the generated inflection training set and
the correctness of the predicted paradigm size of
the languages are the main reasons behind these
performance differences. Improving steps 1 to 3 in
the overall pipeline thus seems important in order
to achieve better results on the task of unsupervised
morphological paradigm completion in the future.

5 Conclusion

In this paper, we described the IMS—CUBoulder
submission to the SIGMORPHON 2020 shared
task on unsupervised morphological paradigm com-
pletion. We explored two modifications of the of-
ficial baseline system by substituting its inflection
generation component with two alternative models.
Thus, our final system performed 4 steps: edit tree
retrieval, additional lemma retrieval, paradigm size
discovery, and inflection generation. The last com-
ponent was either an LSTM sequence-to-sequence
model with attention (IMS—-CUB1) or a pointer-
generator network (IMS—-CUB2). Although our
systems could not outperform the official baselines
on average, IMS—-CUB2 was the best submitted
system. It further obtained the overall highest per-
formance for Bulgarian and Kannada.
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Abstract

This paper presents our system for the SIG-
MORPHON 2020 Shared Task. We build off
of the baseline systems, performing exact in-
ference on models trained on language family
data. Our systems return the globally best so-
lution under these models. Our two systems
achieve 80.9% and 75.6% accuracy on the test
set. We ultimately find that, in this setting,
exact inference does not seem to help or hin-
der the performance of morphological inflec-
tion generators, which stands in contrast to its
affect on Neural Machine Translation (NMT)
models.

1 Introduction

Morphological inflection generation is the task of
generating a specific word form given a lemma and
a set of morphological tags. It has a wide range
of applications—in particular, it can be useful for
morphologically rich, but low-resource languages.
If a language has complex morphology, but only
scarce data are available, vocabulary coverage is
often poor. In such cases, morphological inflection
can be used to generate additional word forms for
training data.

Typologically diverse morphological inflection
is the focus of task 0 of the SIGMORPHON Shared
Tasks (Vylomova et al., 2020), to which we sub-
mit this system. Specifically, the task requires the
aforementioned transformation from lemma and
morphological tags to inflected form. A main chal-
lenge of the task is that it covers a typologically
diverse set of languages, i.e. languages have a wide
range of structural patterns and features. Addition-
ally, for a portion of these languages, only scant
resources are available.

Our approach is to train models on language
families rather than solely on individual languages.
This strategy should help us overcome the problems
frequently encountered for low-resource tasks, e.g.,
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overfitting, by increasing the amount of training
data used for each model. The strategy is viable due
to the typological similarities between languages
within the same family. We combine two of the
neural baseline architectures provided by the task
organizers, a multilingual Transformer (Wu et al.,
2020) and a (neuralized) hidden Markov model
with hard monotonic attention (Wu and Cotterell,
2019), albeit with a different decoding strategy:
we perform exact inference, returning the globally
optimal solution under the model.

2 Background

Neural character-to-character transducers (Faruqui
et al., 2016; Kann and Schiitze, 2016) define a
probability distribution pg(y | x), where 6 is a
set of weights learned by a neural network and x
and y are inputs and (possible) outputs, respec-
tively. In the case of morphological inflection, x
represents the lemma we are trying to inflect and
the morphosyntactic description (MSDs) indicat-
ing the inflection we desire; y is then a candidate
inflected form of the lemma from the set of all valid
character sequences ). Note that valid character
sequences are padded with distinguished tokens,
BOS and EOS, indicating the beginning and end of
the sequence.

The neural character-to-character transducers
we consider in this work are locally normalized.
Specifically, the model pg is a probability distri-
bution over the set of possible characters which
models pg(- | x,y<¢) for any time step ¢. By the
chain rule of probability, pg(y | x) decomposes as

]

po(y | x) =[] poly: | x,y<)
t=1

ey

The decoding objective then aims to find the
most probable sequence among all valid sequences:
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y* = argmaxlogpe(y | x) (2)
yey

This is known as maximum a posteriori (MAP)
decoding. While the above optimization problem
implies that we find the global optimum y*, we
often only perform a heuristic search, e.g., beam
search, since performing exact search can be quite
computationally expensive due to the size of )
and the dependency of pg(- | x,y<¢) on all previ-
ous output tokens. For neural machine translation
(NMT) specifically, while beam search often yields
better results than greedy search, translation quality
almost always decreases for beam sizes larger than
5. We refer the interested reader to the large num-
ber of works that have studied this phenomenon in
detail (Koehn and Knowles, 2017; Murray and Chi-
ang, 2018; Yang et al., 2018; Stahlberg and Byrne,
2019).

Exact decoding effectively stretches the beam
size to infinity (i.e. does not limit it), finding the
globally best solution. While the effects of exact
decoding have been explored for neural machine
translation (Stahlberg and Byrne, 2019), to the best
of our knowledge, they have not yet been explored
for morphological inflection generation. This is
a natural research question as the architectures of
morphological inflection generation systems are
often based off of those for NMT.

3 Data

We use the data provided by the SIGMORPHON
2020 shared task, which features lemmas, inflec-
tions, and corresponding MSDs (following uni-
morph schema (Kirov et al., 2018)) for 90 lan-
guages in total. Data was released in two phases;
the first phase included languages from five fam-
ilies: Austronesian, Niger-Congo, Uralic, Oto-
Manguean, and Indo-European. Data from the
second phase included languages belonging to
Afro-Asiatic, Algic, Australian, Dravidian, Ger-
manic, Indo-Aryan, Iranian, Niger-Congo, Nilo-
Sahan, Romance, Sino-Tibetan, Siouan, Tungu-
sic, Turkic, Uralic, and Uto-Aztecan families.
The full list of languages can be found on the
task website: https://sigmorphon.github.io/
sharedtasks/2020/task0/.

Due to scarcity of resources available to the
task organizers, many of the languages had only a
few morphological forms annotated. For example,
Zarma, a Songhay language, had only 56 available

inflections in the training set and 9 in the develop-
ment set.

4 System description

Our systems are built using two model architec-
tures provided as baselines by the task organizers:
a multilingual Transformer (Wu et al., 2020) and
a (neuralized) hidden Markov model (HMM) with
hard monotonic attention (Wu and Cotterell, 2019).
We then perform exact inference on the models.
The following subsections explain the two compo-
nents separately.

4.1 Model Architectures

The architectures of both models exactly follow
those of the Transformer and HMM proposed as
baselines for the SIGMORPHON 2020 Task 0. We
do this in part to create a clear comparison between
morphological inflection generation systems that
perform inference with exact vs. heuristic decoding
strategies.

We trained HMMs for each language family for
a maximum of 50 epochs and Transformers for a
maximum of 20000 steps. Early stopping was per-
formed if subsequent validation set losses differed
by less than 1e — 3. Batch sizes of 30 and 100,
respectively, were used. Other training configura-
tions followed those of the baseline systems.

Due to the resource scarcity for many of the
task’s languages, we used entire language families
to train models rather than individual languages.
Specifically, we aggregated the data from all lan-
guages of a given family, using a cross-lingual
learning approach. We did not subsequently fine-
tune the models on individual languages. Specifi-
cally, we do not do any additional training on indi-
vidual languages nor do we re-target the vocabulary
during decoding. This means generation of invalid
characters (i.e. invalid for a specific language) is
possible.

4.2 Decoding

For decoding, we perform exact inference with a
search strategy built on top of the SGNMT library
(Stahlberg et al., 2017). Specifically, we use Di-
jkstra’s search algorithm, which provably returns
the optimal solution when path scores monotoni-
cally decrease with length. From equation 1, we
can see that the scoring function for sequences y
is monotonically decreasing in ¢, therefore meet-
ing this criterion. Additionally, to prevent a large
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Beam5
acc
0.726
0.920
0.820
0.762
0.845
0.793
0.976
0.000

Greedy
acc
0.720
0.921
0.820
0.764
0.846
0.800
0.977
0.188

dist

0.48
0.28
0.39
0.50
0.23
0.54
0.03
2.38

dist

0.52
0.22
0.41
0.44
0.22
0.48
0.03
1.88

ang
azg
ceb
cly
cpa
czn
deu
dje

Table 1: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
HMMs.

Beam5
acc
0.578
0.813
0.874
0.657
0.653
0.702
0.882
0.938

Greedy
acc
0.574
0.808
0.874
0.653
0.651
0.695
0.883
0.938

dist

0.76
0.63
0.27
0.72
0.52
0.62
0.19
0.12

dist

0.75
0.62
0.27
0.71
0.52
0.59
0.19
0.12

ang
azg
ceb
cly
cpa
czn
deu
dje

Table 2: Accuracy and Levenshtein distance on the test
set for greedy and beam search with beam size 5 for
Transformers.

memory footprint, we can lower bound the search
by the score of the empty string, i.e. stop exploring
solutions whose scores become less than the empty
string at any point in time. We return the globally
best inflection.

5 Results on the Shared Task test data

Results on the test data from SIGMORPHON 2020
Task 0 can be found in Table 3. For comparison
purposes, Tables 1 and 2 show the performance
of our models with greedy and beam search for a
selection of languages.

5.1 Discussion

The results in Table 3 indicate that the HMM per-
formed better in combination with exact decoding
than the Transformer. On average over the 90 lan-
guages, the HMM achieved an accuracy of 80.9%
in comparison to only 75.6% for the Transformer.
Performance by Levenshtein distance looks simi-
lar: the average Levenshtein distances were 0.5 and
0.62 for the HMM and Transformer, respectively.
A particularly interesting language to study in
this scenario is Zarma (dje), which only has 56 sam-
ples in the training set, 9 samples in the develop-
ment set and 16 samples in the test set. Moreover,
it is the only language in its family, Nilo-Sahan.
The terrible performance of our system on this
language compared with greedy search suggests
that low-resource settings may lead to weak per-
formance with exact decoding. Out of the other
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languages that performed poorly, many were from
the Germanic and Uralic family. Poor performance
on these languages may stem from the fact that
they belong to a family with high-resource lan-
guages. As we trained on language family data
and did not fine-tune the models, it is possible that
lower-resource languages in a high-resource fam-
ily, which are underrepresented in the training data,
are not adequately modelled. In these setting, per-
formance would likely be improve noticeably by
fine-tuning on the individual languages.

6 Conclusion

We perform exact inference on two baseline neural
architectures for morphological inflection, a Trans-
former and a (neuralized) hidden Markov model
with hard monotonic attention, to find the inflec-
tions with the globally best score under the model.
On test data, the hidden Markov model showed
better results: on average, it achieved 80.9% ac-
curacy and a Levenshtein distance of 0.5, while
the Transformer performed worse with 75.6% and
0.62 respectively. Overall, exact decoding of mor-
phological inflection generators does not appear to
significantly affect model performance compared
with greedy search. This is notable when compared
with NMT systems, for which exact search often
leads to performance degradation.



Our Systems Baselines
Transformer HMM Transformer HMM

language acc dist acc dist acc dist acc dist

aka 0.966 0.105 0.980 0.059 0.999 0.000 1.000 0.000
ang 0.569 0.770 0.715 0.512 0.683 0.540 0.719 0.640
ast 0.925 0.178 0.976 0.061 0.993 0.010 0.996 0.010
aze 0.833 0.342 0.786 0.410 0.813 0.340 0.727 0.880
azg 0.813 0.618 0.919 0.283 0.922 0.220 0.916 0.270
bak 0.961 0.080 0.921 0.133 0.993 0.010 0.960 0.290
ben 0.965 0.072 0.989 0.024 0.993 0.010 0.993 0.040
bod 0.828 0.235 0.838 0.213 0.844 0.200 0.832 0.220
cat 0.948 0.116 0.939 0.146 0.996 0.010 0.996 0.010
ceb 0.874 0.270 0.820 0.387 0.865 0.280 0.847 0.310
cly 0.657 0.713 0.762 0.487 0.800 0.390 0.799 0.500
cpa 0.650 0.526 0.841 0.232 0.776 0.320 0.864 0.200
cre 0.684 1.250 0.694 1.210 0.667 1.200 0.668 1.260
crh 0.963 0.045 0.971 0.042 0.977 0.030 0.969 0.060
ctp 0.339 1.523 0.525 1.167 0.441 1.310 0.527 1.970
czn 0.702 0.593 0.793 0.551 0.784 0.490 0.813 0.430
dak 0.955 0.097 0.933 0.145 0.956 0.080 0.929 0.160
dan 0.583 0.664 0.672 0.448 0.655 0.450 0.684 5.270
deu 0.882 0.188 0.976 0.033 0.935 0.100 0.984 0.040
dje 0.938 0.125 0.000 4.313 0.875 0.190 0.000 2.880
eng 0.943 0.128 0.958 0.083 0.954 0.090 0.963 0.080
est 0.604 0.996 0.872 0.432 0.880 0.270 0.882 0.480
evn 0.572 1.061 0.536 1.281 0.571 1.060 0.540 1.200
fas 0.999 0.001 0.999 0.001 1.000 0.000 0.999 0.000
fin 0.847 0.280 0.982 0.033 0.958 0.070 0.992 0.020
frm 0.963 0.102 0.986 0.092 0.995 0.010 0.995 0.010
frr 0.214 2.885 0.317 3.539 0.637 1.080 0.782 0.700
fur 0.951 0.075 0.614 0.829 0.994 0.010 0.974 0.120
gaa 0.793 0.746 0.828 0.426 1.000 0.000 1.000 0.000
glg 0.746 0.560 0.927 0.161 0.996 0.010 0.997 0.010
gmh 0.248 1.766 0.766 0.340 0.745 0.360 0.887 0.150
gml 0.106 2.447 0.494 1.267 0.502 1.150 0.537 2.070
gsw 0.722 0.766 0.873 0.244 0.803 0.370 0.888 0.550
hil 0.945 0.172 0.924 0.315 0.950 0.150 0.941 0.210
hin 1.000 0.001 1.000 0.000 1.000 0.000 1.000 0.000
isl 0.745 0.544 0.933 0.136 0.878 0.260 0.950 0.300
izh 0.107 2.357 0.223 1.616 0.563 0.830 0.683 0.790
kan 0.761 0.779 0.768 0.799 0.767 0.640 0.740 0.750
kaz 0.936 0.304 0.955 0.254 0.971 0.150 0.955 0.240
kir 0.953 0.073 0.970 0.064 0.976 0.040 0.976 0.040
kjh 0.875 0.229 0.900 0.138 0.992 0.010 0.921 0.100
kon 0.981 0.038 0.981 0.026 0.987 0.010 0.987 0.010
kpv 0.672 0.711 0.749 0.550 0.945 0.100 0.932 0.250
krl 0.831 0.309 0.964 0.072 0.948 0.080 0.971 0.050
lin 0.891 0.261 0.870 0.283 0.978 0.020 1.000 0.000
liv 0.286 1.893 0.646 0.721 0.603 0.880 0.713 2.230
11d 0.926 0.158 0.974 0.052 0.996 0.010 0.998 0.000
lud 0.220 2.207 0.390 1.573 0.415 1.230 0.512 1.050
lug 0.852 0.295 0.870 0.228 0.909 0.130 0.901 0.150
mao 0.667 0.667 0.524 1.071 0.619 0.710 0.548 0.930
mdf 0.578 1.094 0.692 0.781 0.910 0.200 0.891 0.310
mhr 0.616 1.135 0.724 0.833 0.866 0.250 0.838 0.350
mlg 0.984 0.024 0.984 0.016 1.000 0.000 0.984 0.020
mit 0.935 0.093 0.890 0.170 0.935 0.090 0.873 0.250
mwf 0.887 0.279 0.779 0.500 0.896 0.270 0.608 0.920
myv 0.779 0.587 0.782 0.546 0.930 0.180 0.888 0.360
nld 0.880 0.210 0.971 0.054 0.961 0.070 0.980 0.040
nno 0.472 0.799 0.636 0.517 0.698 0.480 0.789 0.610
nob 0.661 0.659 0.674 0.630 0.752 0.470 0.748 0.680
nya 0.974 0.060 0.966 0.090 1.000 0.000 1.000 0.000
olo 0.795 0.372 0.896 0.185 0.876 0.200 0.930 0.130
ood 0.793 0.439 0.745 0.529 0.809 0.410 0.758 0.490
orm 0.990 0.020 0.978 0.049 0.990 0.010 0.975 0.040
ote 0.913 0.142 0.964 0.084 0.969 0.040 0.991 0.010
otm 0.793 0.592 0.955 0.130 0915 0.240 0.981 0.050
pei 0.620 0.800 0.715 0.679 0.728 0.570 0.714 0.610
pus 0.888 0.280 0.878 0.315 0.898 0.260 0.886 0.380
san 0.906 0.185 0.915 0.183 0.931 0.140 0.910 0.210
sme 0.776 0.481 0.978 0.053 0.944 0.110 0.986 0.040
sna 0.965 0.094 0.961 0.103 1.000 0.000 1.000 0.000
sot 0.879 0.343 0.909 0.242 0.990 0.010 1.000 0.000
swa 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
swe 0.782 0.387 0.947 0.093 0.897 0.180 0.976 0.200
syc 0.916 0.084 0.901 0.099 0.900 0.100 0.898 0.100
tel 0.938 0.300 0.941 0.333 0.949 0.260 0.934 0.270
tgk 0.563 1.125 0.875 0.375 0.688 0.750 0.875 0.380
tgl 0.699 0.862 0.617 1.368 0.705 0.830 0.640 1.070
tuk 0.858 0.510 0.848 0.530 0.856 0.430 0.858 0.450
udm 0.796 0.525 0.840 0.400 0.970 0.060 0.959 0.110
uig 0.953 0.163 0.983 0.065 0.988 0.020 0.991 0.010
urd 0.987 0.023 0.991 0.016 0.991 0.020 0.991 0.080
uzb 0.991 0.028 0.991 0.067 0.995 0.020 0.995 0.020
vec 0.816 0.414 0.924 0.174 0.995 0.010 0.996 0.010
vep 0.666 0.636 0.800 0.357 0.781 0.330 0.805 0.340
vot 0.043 3.032 0.093 2.192 0.470 0.930 0.605 0.800
vro 0.175 2.583 0.233 1.689 0.233 1.640 0.388 1.320
Xno 0.235 3.039 0.549 1.686 0.765 1.240 0.804 2.880
Xty 0.842 0.360 0.875 0.360 0.868 0.330 0.882 0.470
zpv 0.724 0.750 0.789 0.535 0.816 0.410 0.803 1.500
zul 0.628 1.000 0.808 0.449 0.910 0.190 0.872 0.210
average 0.756 0.620 0.809 0.500 0.859 0.307 0.860 0.485
std.dev. 0.237 0.712 0.208 0.692 0.161 0.371 0.170 0.785

Table 3: Accuracy and Levenshtein distance for both of our systems, as well as for the baselines.
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Abstract

We present a model for the unsupervised dis-
covery of morphological paradigms. The
goal of this model is to induce morphological
paradigms from the bible (raw text) and a list
of lemmas. We have created a model that splits
each lemma in a stem and a suffix, and then
we try to create a plausible suffix list by con-
sidering lemma pairs. Our model was not able
to outperform the official baseline, and there is
still room for improvement, but we believe that
the ideas presented here are worth considering.

1 Introduction

In this paper we describe our attempt to cap-
ture morphological paradigms totally from scratch
(Kann et al.,, 2020) prepared for the task
of morphological paradigm completion in the
CoNLL-SIGMORPHON 2020 Shared Task. Com-
putational morphology is not a new area and there
is plenty of related work. Some years ago, this
problem was commonly tackled using finite-state
and two-level approaches, such as in Kaplan and
Kay (1994), Beesley and Karttunen (2003), and
Koskenniemi (1983). Recent works, on the other
hand, rely mostly on statistical approaches, such
as in Faruqui et al. (2016) and Kann and Schiitze
(2017).

There have been several Shared Tasks recently
on morphological inflection (Cotterell et al., 2016,
2017, 2018; McCarthy et al., 2019). The task for
this year is more complex, as we are asked to dis-
cover paradigms from scratch. This is an intriguing
research area that could give us the chance of recov-
ering dead languages that have only limited written
resources. Several researchers have attempted to
solve this task, such as Goldsmith et al. (2017), Jin
et al. (2020), and Erdmann et al. (2020).

We present a pipeline that assumes that all mor-
phological realizations in a paradigm (for each lan-
guage) follow a fixed structure: stem+suffix.
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Based on that logic, we look for the best candidates
to compose the suffix inventory, we cluster them
using K-means and after that, we join stems and
suffixes. We employ language models to get the
most natural outputs. The pipeline that we have
developed does not contain any neural network
component, but we contemplate it as a possibility
to extend our work in the near future.

This paper is structured as follows: In the next
section we introduce the task that we have worked
on. We describe our approach in the third section.
Afterwards, we show our results compared to the
baseline model. To conclude, we discuss our results
and provide possible future directions.

2 Task

In this competition there was one task that we had
to perform. A computational system had to be
built, which, given a raw text and a set of lemmas,
it would return the complete list of paradigms for
each verb. The computational model should be able
to read a text like this,

The aircraft landed at the JFK airport. Other
pilots decided to land in Philadelphia. As you may
imagine, landing a plane is not an easy job, but
imagination can help.

and extract morphological paradigms. In the shared
task, a list of lemmas is also given as a starting
point. This list of lemmas could include verbs like
land and imagine.

In the case of the verb land, in the example
above, it is pretty easy to get its inflections (land,
landed, landing). This could, for example, be done
with a Minimum Edit Distance based method and it
is relatively easy, as there is no usage of land with
the function of a noun. It gets slightly more compli-
cated with the verb imagine, as a simple distance-
based algorithm could fail, because it could find
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imagination as a possible conjugation of the verb
imagine.

2.1 Dataset

As one of the most widely extended resources is
the bible, the organizers decided to consider it as
the raw text input data. Together with the bible, a
list of verbal lemmas was given. The languages for
development were Maltese, Persian, Portuguese,
Russian and Swedish. The languages for testing in-
cluded the following: Basque, Bulgarian, English,
Finnish, German, Kannada, Navajo, Spanish and
Turkish.

3 Method

Our method has a very strong assumption, which
oversimplifies the problem but it also gives the
chance of recognizing some patterns. The assump-
tion is that all lemmas and their inflections have the
following form for all languages

STEM+SUFFIX — STEM+SUFFIX'

as illustrated in the following examples for English
and Spanish:

play+e — play+ing
Jug+ar — jug+ando

play — playing
Jugar — jugando

Pipeline

We use a pipeline that includes four different steps.
These are described below.

3.1 Stepl

In the first step, for each lemma /! in the lemma
list L and each word w in the corpus/dictionary
D, all possible splits l%+l|2”, l%—i—lgl,.., llll‘—i—e, and
w%+w|2w|, w%+w§“”|,.., w‘lw‘ +€ are generated. (We
use v, with 0 <4 < j < |v|, to denote the sub-
string v;..v; of a string v.) We assume the stem (the
hypothesized STEM) to be nonempty but allow the
suffix to be empty. For the Spanish lemma jugar we
thus get j4ugar, ju+gar, jug+ar, juga+r, and
Jugar+e.

3.2 Step2

In the second step, we determine the inflections of
the regular verbs of the language. These will be
used for the estimation of the morphological rich-
ness 7., of the lemmas (verbs) in the third step.
The morphological richness of the lemmas can
be identified with the number of combinations of
those tense, aspect, mood, and agreement features
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that can be distinctively morphologically realized.
Because the morphological richness of the lem-
mas (verbs) does not tend to vary much across
the different lemmas (verbs), even if they inflect
semi-irregularly or irregularly, we assume that each
lemma has 7, different inflections. r,, thus pro-
vides an upper bound on the number of cells of the
paradigms of the language/corpus.

For determining r,, we identify the inflections
of the lemmas with regular inflection. First, we
determine for each splitted lemma [ = r+s the
number of potential inflections of the hypothe-
sized stem 7, that is r+s’, in D. This is the set
Srts = {8 | r+s € D}. Then, for regularly in-
flecting lemmas, S, will be large for the actual
split but also for any split within the stem. This
is illustrated for the German lemma spielen (play)
with the actual split spiel+en below.

Sxpiele+n = {E, n}

Sypictten = {€, 8t, t, en, ...}

Sypietien = {le, Ist, It, len, ...}

To accommodate for this deficiency, we also con-
sider pairs of splitted lemmas [ = r+s, I’ = r'+s
with distinct stem endings 7|, # fr"r,| and we de-

termine the split 7 of s that yields the maximum
number of common inflections:

1= maXie(o,..|sl} |5, ol 05,1 lel

We choose for each lemma pair [, I’ the splits
P+5 and #+8, with 7=rs), # =r'sh, and
5= s‘i , and consider their common suffixes in
D: Sq50 Sf-/+§.

Because regularly inflecting verbs tend to share
their inflections, this lemma pairing allows us to re-
liably predict that, for example, the stems of spielen
and gehen are spiel and geh.

Sspictetn N Sgenetn = {€, N}

Sxpiel—i—en N Sgeh+en = {6, St, t, en, }

Sspie—i—len N Sge—‘rhen = @

Finally, for all splitted lemmas 7+35 we collect
the suffixes in S;; in one bag.

3.3 Step3

The goal of this step is to group different realiza-
tions of the same suffix. The previous step captures
relevant suffixes, but in some cases, some parts of
the stem are also included in these suffixes, or there
might be some slight differences, because of mor-
phophonological changes. In order to group them,
we employ K-Means.



When using K-means we need a function that
calculates the distance between the elements, and
based on this distance, the instances will be clus-
tered. We decided to employ a modified version
of Minimum Edit Distance. Our modified version
tries to punish changes that are made at the end
of the suffix. The assumption in this case, is that
changes at the beginning of the suffix are more
likely to be caused by the stem (and they could be
the same suffix). On the other hand, if there are
changes at the end, it would be a different suffix.
Our edit distance algorithm allows insertion and
deletion as possible changes. We also assume that
it is worse to substitute a vowel with a consonant,
than changing a vowel with a vowel. Therefore,
this would happen:

Distance (era, bra) > Distance (era, ara)

‘ ntar ntaron  aron ar
ntar 0.000 0939 0.778 0.094
ntaron - 0.000 0.015 0.832
aron - - 0.000 0.656
ar - - - 0.000

We estimate that the number of paradigms (7,,)
in a language is approximately the third of the
number of different suffixes found in the previ-
ous step. This number was estimated based on
the behaviour of the model considering Swedish
data. Therefore, K-means will reduce the num-
ber of possible suffixes to the third (this is a pa-
rameter that will be tuned in the future). For ex-
ample, one of the clustered groups found in this
step considering the Spanish data would be this:
{rd,erd,derd,ard,ird}. This corresponds to the
suffix of future simple, third person singular.

34 Step4

In the previous steps we will have generated pos-
sible suffixes for each cell in a paradigm. Now,
the goal is to make a guess of how a word form
should be generated. For example, in Spanish, if
we have the lemma sanar, and we want to build the
first person singular of the future simple tense (sa-
naré), we could expect the lemma to be combined
with suffixes like é, ré, aré, iré, and so on. These
suffixes would be the output of the previous step.
First of all, for each lemma, the model needs
to decide the position in which we will split the
lemma, as following the previous assumption a
word will have this shape: STEM+SUFFIX. In or-
der make that decision, we check how often we
associate each lemma with a specific stem in the
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output of step 2, and use the most frequently occur-
ring stem for all the suffixes. For example, for the
verb sanar, in Spanish, we get these frequencies:
san:15, sana:21, sa:1, and therefore, we
would use the stem sana.

We, then, try to join that stem with the clustered
suffixes. Each stem will be joined with one suf-
fix from each cluster. In order to decide which
is the best suffix, we use a bigram character-level
language model to estimate the probability of the
output sequences, trained on the input bible. These
are the probabilities that we get if we consider the
example of the stem sana (from sanar) and suffixes
é, ré, aré and iré in Spanish.

Candidate output ‘ Probability

sanaé 0.0
sanaré 4.097¢ — 07
sanaaré 1.272e — 10
sanairé 2.201e — 10

Obviously, in this case, the conjugation sanaré
would be returned.

3.5 Expansion of the lemma list

At this point, the model produced a little amount
of suffixes. Then, we decided to extend the list of
input lemmas, so that it can find new suffixes and
increase, therefore, the recall of the model.

We obtain new lemmas by training a very simple
verb classifier. We create a simple dataset with
the input lemmas and some random words from
the corpus. The input lemmas will be tagged as
verbs and the random words will be tagged as non-
verbs. We, then, train a simple Logistic Regression
model, using character uni-, bi- and trigrams for
representing each word. We also include word
boundary symbols. For instance, in Spanish we
would have cases like:

Word Features (trigrams) class
comer | <co, com, ome, mer, me> \Y,
plaza <pl,pla, laz, aza, za> NV

Using this approach we obtain new verbs that
can be used in our Pipeline. The model that uses
the extended list of lemmas for extracting suffixes
is called the Flexible model, and on the other hand,
the initial model (the one that uses only the initial
lemmas as input) is called the Non-flexible model.

4 Results

Table 1 and table 2 show our models performance
for the development languages and also the test



Development languages

Language Gold Baseline Non-flexible model Flexible model

no. of slots | no. of slots | macro | no. of slots | macro | no. of slots | macro
Maltese 32 17 | 0.2029 2| 0.013 254 | 0.0022
Persian 136 31 | 0.0605 2 1 0.0074 11 | 0.0155
Portuguese 76 34 | 0.3964 70 | 0.1275 1104 | 0.0109
Russian 16 19 | 0.4132 10 | 0.0706 387 | 0.0035
Swedish 11 15 | 0.4167 17 | 0.2282 588 | 0.0093

Table 1: Macro average results and the number of predicted slots for the Baseline model together with our Non-
flexible and Flexible models, tested on development languages.

Test languages

Language Gold Baseline Non-flexible model Flexible model

no. of slots | no. of slots | macro | no. of slots | macro | no. of slots | macro
Basque 1658 27 | 0.0006 2 | 0.0001 30 | 0.0002
Bulgarian 54 34 | 0.3169 13 | 0.0415 138 | 0.0299
English 5 4| 0.662 71 0.1729 51 | 0.0353
Finnish 141 21 | 0.055 108 | 0.0208 1169 | 0.0039
German 20 9 0.29 40 | 0.0498 425 | 0.007
Kannada 57 172 | 0.1512 1] 0.0169 44 1 0.0427
Navajo 30 3] 0.0327 0.002 38 | 0.0013
Spanish 70 29 | 0.2367 40 | 0.1084 225 | 0.0352
Turkish 120 104 | 0.1553 502 | 0.0071 1772 | 0.0011

Table 2: Macro average results and the number of predicted slots for the Baseline model together with our Non-

flexible and Flexible models, tested on test languages.

languages. Unfortunately, we could not surpass the
baseline model in any of the languages. We can
say that among the development language results,
Portuguese and Swedish are the ones that are best
captured by the Non-flexible model. Considering
the test languages, Spanish and English are the
ones that were best modeled by the Non-flexible
model.

It also seems that while the flexible model might
have a better recall, the obtained result is not good
enough, and therefore, it still requires some filter-
ing.

5 Discussion and Future Work

We have presented our approach for automatically
discovering morphological paradigms, given a text
and list of lemmas. As mentioned above, our results
are behind the official baseline, and therefore, there
is a wide range of possibilities for improvement.
We discuss some of them below.

We assumed each inflected form to be decom-
posable into a stem and a suffix. This could be, for
example, sufficient for English or Spanish, but not

114

for languages such as German that follow a two
splits pattern:

STEM+SUFFIX — PREFIX+STEM+SUFFIX’

In German, for example, participles are formed by
prefixing ge:

play — played play+e — play+ed
spielen — gespielt | spiel4+en — ge+spiel+t

Apart from that, a much more straightforward
estimate of the morphological richness r,, could,
for example, be obtained by just considering the
triple I = #l4s, 12 = #2+s, 13 = #3+s of opti-
mally splitted distinct lemmas with the maximum
number of common suffixes. Because these lem-
mas are most likely to be frequently used lemmas
with regular inflection, the size of the union of their
inflections would presumably yield a good estimate
of r,,,. Clustering of these triples could also help
in identifying verb classes with distinct but regular
inflection.

Moreover, splitting of compound verbs of the
form X+V, with X typically a noun or verb, would
certainly improve performance because the inflec-



tions of the verb V could be used for the typically
less frequent compound verb X+V.

With respect to the writing system, the Basque
bible follows old orthographical rules. On the other
hand, the lemmas were written following more re-
cent orthography rules. This lack of consistency
makes the task a challenge, and we expect it to
happen in other languages as well. This issue re-
quires special attention, by maybe applying some
preprocessing to the lemmas to accommodate to
the old writing system (Etxeberria et al., 2019).

Also, we mentioned at the beginning of the ar-
ticle that we have not used any neural network
based component, and these would be very useful
for learning the morphophonological changes that
commonly happen when inflecting words. There-
fore, we would like to incorporate a Sequence-
to-Sequence model at the end of our pipeline
(Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017).
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Abstract

This paper presents the University of Al-
berta systems and results in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-
to-Phoneme Conversion. Following previous
SIGMORPHON shared tasks, we define a low-
resource setting with 100 training instances.
We experiment with three transduction ap-
proaches in both standard and low-resource
settings, as well as on the related task of
phoneme-to-grapheme conversion. We pro-
pose a method for synthesizing training data
using a combination of diverse models.

1 Introduction

In this system paper, we discuss the participation
of the University of Alberta team in the SIGMOR-
PHON 2020 Task 1: Multilingual Grapheme-to-
Phoneme Conversion (Gorman et al., 2020). This is
a sequence-to-sequence transduction task, in which
a word, represented by a sequence of graphemes,
must be converted into the sequence of phonemes
representing its pronunciation. For example, given
the French word connaissent the correct output is
the phoneme sequence [k on € s].

Following previous SIGMORPHON shared
tasks, in addition to the standard setting with 3600
training examples for each language (which we
refer to as the high-resource setting), we define a
low-resource setting in which training data is lim-
ited to 100 examples. This emulates a plausible
scenario of working with a low-resource language
for which only a small quantity of reliable phono-
logical data is available. For example, a typical
IPA description of the phonological inventory of a
single language contains about a hundred phonetic
transcriptions of individual words (IPA, 1999). We
analyze the relative performance of different sys-
tems depending on the size of the training data.

The task of phoneme-to-grapheme (P2G) conver-
sion is the inverse of grapheme-to-phoneme Con-

version (G2P), in which the goal is to predict the
spelling of a word given its phonetic transcription
(Rentzepopoulos and Kokkinakis, 1996). While
G2P reflects the difficulty of reading, P2G may
indicate the complexity of writing in a given lan-
guage. Training instances for one of the two tasks
can easily be applied to the other one by simply re-
versing the input and output. We use the shared task
datasets to investigate how systems designed for
G2P perform on P2G. We also leverage raw text
corpora to improve the accuracy on P2G, which
indirectly leads to improvements on G2P as well.

We develop a novel method of mitigating re-
source limitations by synthesizing additional train-
ing data using a combination of multiple G2P and
P2G models. The underlying intuition is that a
P2G model should be the inverse of the correspond-
ing G2P model. Since models trained on a small
number of instances tend to have limited accuracy,
we attempt to distinguish between the correct and
incorrect predictions by ensuring that P2G model
output matches the corresponding G2P model input.
The precision of this approach is further improved
by comparing predictions of different systems. Fig-
ure 1 illustrates this idea.

The principal contributions of this paper include
a novel G2P data augmentation method that lever-
ages multiple systems and text corpora, as well as
a thorough comparison of several G2P and P2G
systems in both low-resource and high-resource
settings.

2 Prior Work

Our methods build upon the prior work of the Uni-
versity of Alberta teams on string transduction. Di-
recTL, a feature-based discriminative transducer,
was originally designed for the G2P task (Jiampo-
jamarn et al., 2008). In DirecTL+ (Jiampojamarn
et al., 2010), the feature set was augmented with
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Figure 1: Our approach to synthesizing additional G2P training data.

joint n-grams defined on both source and target
substrings. The system was applied to related tasks
such as transliteration (Jiampojamarn et al., 2009),
morphological inflection (Nicolai et al., 2015),
stemming (Nicolai and Kondrak, 2016), and cog-
nate projection (Hauer et al., 2019), proving to be
particularly competitive in low-resource settings.
DTLM (Nicolai et al., 2018), our principal tool in
this work, is a successor of DirecTL+, which in-
corporates target-side language models and a high-
precision alignment. DTLM achieved state-of-the-
art results on several tasks in which plain word
types constitute the transduction target strings. Fi-
nally, our data augmentation approach is inspired
by the self-training approach of Hauer et al. (2017).

3 Methods

In this section, we first describe DTLM, a multi-
purpose string discriminative transduction system
which we apply to both G2P and P2G tasks. We
then introduce our approach to synthesizing addi-
tional training data from unannotated texts.

3.1 Discriminative String Transduction

The core of DTLM, adapted from DirecTL+, is a
dynamic programming algorithm which uses a set
of feature templates to transduce multiple charac-
ters in a single operation. The feature set includes
context features (n-grams on the source side), tran-
sition features (target side bigrams), linear-chain
features (conjunction of context and transition fea-
tures), and joint n-gram features (on both source
and target).

The transduction quality of DTLM depends on
a high precision one-to-many alignment, which
is performed with M2M+ aligner (Jiampojamarn
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et al., 2007) in a two-step process. In the first step,
M2M-+ induces a one-to-one alignment in which
null symbols may be inserted on either side. In the
second step, the null links on the source side are
removed by merging adjacent target symbols.

The accuracy of DTLM can be enhanced by
leveraging target character and word language mod-
els. A 4-gram character languages model, which
is induced from a set of word types extracted
from a text corpus, encourages the prediction of
high-probability letter sequences. A unigram word
language model (which we also refer to as word
counts) biases DTLM toward the production of
known word-forms, with more common words and
prefixes being preferred. Thus, DTLM is able to
take advantage of existing multi-lingual text cor-
pora, such as Wikipedia, to improve its accuracy
on P2G. Since we have no access to any corpora of
phonetic transcriptions, the language model com-
ponent is not used for G2P.

3.2 Data Augmentation

Inspired by the data hallucination technique for
neural model training (Silfverberg et al., 2017;
Anastasopoulos and Neubig, 2019), we introduce a
method to synthesize additional training instances
from unannotated texts. For each language under
consideration, we train base transduction models
on the available training data, and extract a list of
words from a text corpus. A naive self-training ap-
proach would be to simply apply a base G2P model
to the words in the list to produce new training
instances. However, without some mechanism to
filter out incorrect predictions, a model trained on
the augmented data would learn to replicate many
of the errors made by the base model. Instead, we



reduce the noise by cross-checking the predictions
of the independent base transduction systems ap-
plied in both directions.

Figure 1 illustrates the data augmentation pro-
cess. For each word in the word list, we perform
multiple sanity checks before accepting a new train-
ing instance. First, both G2P models (in this case,
DTLM and FST) must agree on their phoneme pre-
dictions. Second, when applied to the common
G2P prediction, the corresponding base P2G mod-
els must not only agree, but also output the original
orthographic word. If both G2P models predict
the same phoneme sequence, and both P2G mod-
els recover the original grapheme sequence, that
grapheme—phoneme pair is added to the synthetic
training data. The final augmented model is trained
on the combined original and synthetic data.

4 Development

In this section, we describe our development ex-
periments on both G2P and P2G with three differ-
ent transduction systems and the synthetic training
data.

4.1 Datasets

We created low-resource datasets of 100 instances
from each standard (high-resource) training set of
3600 instances (Lee et al., 2020). We extracted
every 36th instance, starting from the first instance,
in a deterministic manner, to ensure replicability.
The P2G datasets were created by swapping the
grapheme and phoneme strings in the task datasets.
The official development sets of 450 instances were
used for model tuning only.

4.2 Task Baselines

The task organizers provided implementations of
three baseline systems, which are referred to as
FST, LSTM, and TRANSFORMER. These are not
baselines in the traditional sense of “the simplest
possible algorithm” (Manning and Schutze, 2001,
page 234), but rather sophisticated systems capable
of achieving state-of-the-art results on related tasks.
Rather than develop a novel competitive approach,
our goal was to combine the unmodified baselines
and DTLM to achieve a relative improvement with
respect to the individual systems.

As our neural base system, we selected TRANS-
FORMER, an encoder-decoder architecture with
fully-connected layers and self-attention mecha-
nism, which was originally developed for machine

Language | DTLM -LM -WC -LM-WC
Dutch 21.6 256  25.1 29.8
French 282 284 484 52.2
Greek 33.1 409 520 59.6

Table 1: WER for variants of DTLM on P2G develop-
ment sets in the standard (high-resource) setting.

translation (Vaswani et al., 2017). Our choice of
TRANSFORMER over LSTM was based on initial
development experiments.! The system is imple-
mented using the Fairseq toolkit (Ott et al., 2019).

Unlike FST, which only needs to be tuned on the
size of n-grams, TRANSFORMER requires exten-
sive tuning which may take several days to com-
plete. We attempted to follow the tuning guidelines
as they became available. We kept the hyperparam-
eters as specified in the source code, with the max-
imum number of training epochs set to 400. The
tuning was performed separately for each language
in terms of word error rate (WER). We trained the
models on two Nvidia Titan RTX GPUs, using
Adam optimizer. We varied dropout probability be-
tween 0.1, 0.2, and 0.3. and batch size between 256,
512, and 1024 in the high-resource setting, and 64
in the low-resource setting. Due to the underspec-
ification in the guidelines, instead of tuning the
number of epochs, we took the model checkpoint
of the last epoch.

Unfortunately, we were ultimately unsuccessful
in replicating the official results of TRANSFORMER.
The implementation used for producing the official
results was not available at the system submission
time, and used different hyperparameter settings.’

4.3 DTLM and P2G

DTLM was our principal system for both G2P and
P2G. The models were tuned on the official de-
velopment sets separately for each task (G2P and
P2G), language, and setting (high-resource and
low-resource). The context size was varied from
1 to 3 in low-resource, and from 2 to 7 in high-
resource settings. We also varied joint n-gram fea-
tures from 1 to 6, and Markov order from O to 2,
with and without linear chain features.

For P2G models, we extracted word frequency
lists for each language from the first one million

"However, the official baseline results, show LSTM as
more accurate than TRANSFORMER on most languages. The
model results and predictions were not available at the system
submission time.

*Unlike the earlier implementation that we used, it tuned
the number of training epochs without a fixed maximum.
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lines of Wikipedia®, excluding words with fre-
quency less than 10, shorter than 4 characters, or
containing non-alphabetic characters. From the
word lists, we generated 4-gram character language
models using the CMU Toolkit*. Target language
models are not used for the G2P task because of
the lack of phonetic transcription corpora.

Table 1 demonstrates the impact of word counts
(WC) and character language models (LM) on P2G
accuracy. The results on three challenging lan-
guages suggest that most of the DTLM advantage
comes from leveraging monolingual text corpora.
Furthermore, word counts help more than charac-
ter LMs. Without those two components, DTLM
results on P2G in the standard (high-resource) set-
ting were in the same range as FST and TRANS-
FORMER.

4.4 Synthetic Training Data

For our data augmentation approach outlined in
Section 3.2, we required base G2P and P2G trans-
duction systems. We preferred FST and DTLM
over TRANSFORMER, as they performed better on
small training datasets in terms of both accuracy
and speed. Although data augmentation could also
be applied to P2G, we used it exclusively for G2P,
which is the primary focus of this shared task.

The starting point for generating the synthetic
training data were the word lists extracted from
Wikipedia, as described in Section 4.3. We applied
the base models to the lists, and filtered out the
instances on which the models disagreed or failed
to recover the original spelling from their own pho-
netic predictions. We further limited the number of
synthetic training instances to 20,000 per language.
This process failed to produce a substantial num-
ber of new instances for Vietnamese and Korean,
which we attribute to the unusual characteristics of
the two scripts.

The data augmentation approach was successful
in our development experiments on the standard
high-resource datasets, reducing the average WER
with respect to base TRANSFORMER from 17.0%
to 16.0%, We obtained improvements on 13 out of
15 languages, with the exception of Bulgarian and
Korean.’

3 https://dumps.wikimedia.org

Shttp:/twww.speech.cs.cmu.edu/SLM

>Only 36% of the graphemes in the Korean test set are
observed in the low-resource train set. The corresponding
number in Japanese is 90%.
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High Resource Low Resource
Language |DTLM FST TF|DTLM FST TF
Adyghe 182 16.7 21.3| 53.1 56.0 87.8
Armenian 49 51 80| 140 273 80.7
Bulgarian 60 64 84| 209 287 838
Dutch 23.8 27.3 21.1| 340 66.7 90.4
French 28.7 504 51.3] 51.6 724 94.0
Georgian 1.1 07 11| 44 64 747
Greek 329 59.6 569| 41.3 89.1 97.6
Hindi 3.8 120 15.1| 180 458 86.9
Hungarian 40 69 8.0| 149 287 81.8
Icelandic 13.6 12.0 15.6| 28.0 45.6 824
Japanese 44 9.8 3.6| 61.1 593 97.8
Korean 39.1 50.0 32.7| 96.7 97.3 100
Lithuanian 40 3.6 33| 151 258 75.1
Romanian 1.8 1.3 29| 17.8 156 573
Vietnamese | 16.2 184 16.2| 71.8 85.6 96.9
Average 13.5 18.7 17.7| 36.2 50.0 85.8

Table 2: WER on P2G test sets.

5 Test Results

Table 2 shows the P2G results on the test sets. All
models are trained on the same training sets, with-
out any synthesized instances. TRANSFORMER
(TF) completely fails with only 100 training in-
stances (low resource), but outperforms FST with
3600 training instances (high resource).® DTLM
is substantially more accurate on average than
the other two systems in both settings. Although
DTLM benefits from information extracted from
freely-available unannotated text corpora, the re-
sults of the three systems are directly comparable
because they all use the same annotated training
material. This further confirms the claim of Nicolai
et al. (2018) that DTLM achieves state-of-the-art
results on the task of phoneme-to-grapheme con-
version.

Table 3 shows the G2P results on the test sets.
The DTLM models were trained without any syn-
thetic data or target language models. Although
DTLM results are generally lower than on P2G,
it outperforms FST in both settings.” TRANS-
FORMER again fails in the low resource setting,
In the standard (high resource) setting, DTLM is
about 6% worse on average than TRANSFORMER
in terms of WER, but 10% better in terms of PER
(3.9% vs 4.3% according to the official results). In
addition, DTLM is much easier and faster to train.

The TRANSFORMER models trained on the data

SWe note that the P2G accuracy is particularly high on
Georgian, which, unlike French, seems to be easier to write
than to read.

" FST, which is not included in Table 3, obtains 22.0%
WER average in the standard setting according to the official

results, and 58.1% WER average in the low-resource setting,
as our submission with RunID=5.



High Resource Low Resource
Language |DTLM TF TF+|DTLM TF TF+
RunID 1 2 3 4 6 -
Adyghe 29.8 289 282 544 929 584
Armenian 169 13.1 16.0| 364 829 36.2
Bulgarian 35.8 300 36.7| 67.6 933 664
Dutch 19.6 193 169| 58.7 93.6 57.6
French 76 64 64| 533 949 449
Georgian 282 258 27.1| 396 844 422
Greek 158 17.1 17.3| 39.1 88.0 440
Hindi 122 107 87| 482 89.8 43.1
Hungarian 53 60 53| 276 876 227
Icelandic 13.1 102 11.3| 61.6 909 62.0
Japanese 87 6.7 67| 57.8 98.0 53.1
Korean 453 451 45.1] 951 100 100
Lithuanian | 21.8 22.7 244 62.7 90.7 64.0
Romanian | 11.3 12.7 10.7] 30.2 693 28.9
Vietnamese| 7.8 7.3 87| 753 953 87.3
Average 18.6 17.5 18.0| 53.8 90.1 54.1

Table 3: WER on G2P test sets.

augmented with synthesized instances (labeled as
TF+ in Table 3) achieved consistently higher results
in our development experiments in the standard
(high resource) setting (Section 4.4). Unfortunately,
a corresponding improvement is not seen in the
official test results. Possible explanations include
the limit of 400 on the number of epochs made
by the task organizers, as well as the suboptimal
tuning procedure, which might have accidentally
resulted in the overfitting of the augmented model.
This is also suggested by the fact that the results of
our TRANSFORMER models are often better than
the official results on the test datasets.

On the other hand, the data augmentation ap-
proach is remarkably successful in the low-resource
setting, yielding an average WER improvement
over 35% with respect to base TRANSFORMER. We
interpret these results as a strong proof-of-concept
of the validity of our data augmentation approach;
when training data is limited, it can dramatically
improve the accuracy of neural models, without
any change to their architecture.

6 Conclusion

We have presented a novel data augmentation
method that combines the strengths of multiple
string transduction methods. We have also explored
both G2P and P2G tasks in both the standard high-
resource setting, and a low-resource setting of our
own design. The results demonstrate that the weak-
ness of neural systems in low-resource settings can
be mitigated through the application of data aug-
mentation.
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Abstract

In this paper, we describe two CU Boulder
submissions to SIGMORPHON 2020 Task 1
on multilingual grapheme-to-phoneme conver-
sion (G2P). Inspired by the high performance
of a standard transformer model (Vaswani
et al., 2017) on the task, we improve over this
approach by adding two modifications: (i) In-
stead of training exclusively on G2P, we addi-
tionally create examples for the opposite direc-
tion, phoneme-to-grapheme conversion (P2G).
We then perform multi-task training on both
tasks. (i) We produce ensembles of our
models via majority voting. Our approaches,
though being conceptually simple, result in
systems that place 6th and 8th amongst 23
submitted systems, and obtain the best results
out of all systems on Lithuanian and Modern
Greek, respectively.

1 Introduction

This paper describes the CU Boulder submissions
to the SIGMORPHON 2020 shared task on mul-
tilingual grapheme-to-phoneme conversion (G2P).
G2P is an important task, due to its applications
in text-to-speech and automatic speech recognition
systems. It is explained by Jurafsky and Martin
(2009) as:

The process of converting a sequence
of letters into a sequence of phones is
called grapheme-to-phoneme conversion,
sometimes shortened g2p. The job of a
grapheme-to-phoneme algorithm is thus
to convert a letter string like cake into a
phone string like [K EY K].

While the earliest G2P algorithms have used
handwritten parser-based rules in the format of
Chomsky-Halle rewrite rules, often called letter-to-
sound, or LTS, rules (Chomsky and Halle, 1968),
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later techniques have moved on to generating semi-
automatic alignment tables such as in Pagel et al.
(1998). Today, a lot of work aims at using machine
learning — in particular deep learning techniques —
to solve sequence-to-sequence problems like this.
We explore using a transformer model (Vaswani
et al., 2017) for this problem, since it has shown
great promise in several areas of natural language
processing (NLP), outperforming the previous state
of the art on a large variety of tasks, including ma-
chine translation (Vaswani et al., 2017), summariza-
tion (Raffel et al., 2019), question-answering (Raf-
fel et al., 2019), and sentiment-analysis (Munikar
et al., 2019). While previous work has used trans-
formers for G2P, experiments have only been per-
formed on English, specifically on the CMUDict
(Weide, 2005) and NetTalk! datasets (Yolchuyeva
et al.,, 2020; Sun et al., 2019). Our approach
builds upon the standard architecture by adding
two straightforward modifications: multi-task train-
ing (Caruana, 1997) and ensembling. We find
that these simple additions lead to performance
improvements over the standard model, and our
models place 6th and 8th among 23 submissions to
the SIGMORPHON 2020 shared task on multilin-
gual grapheme-to-phoneme conversion. Our two
models further perform the best on the languages
Lithuanian and Modern Greek, respectively.

2 Task and Background

2.1 Grapheme-to-Phoneme Conversion

G2P can be cast as a sequence-to-sequence
task, where the input sequence is a sequence of
graphemes, i.e., the spelling of a word, and the
output sequence is a sequence of IPA-like symbols,
representing the pronunciation of the same word.

"https://archive.ics.uci.edu/ml/
datasets/Connectionist+Bench+ (Nettalk+
Corpus)
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Formally, let > be an alphabet of graphemes
and X p be an alphabet of phonemes. For a word w
in a language, G2P then refers to the mapping

g(w) = p(w), (D
with g(w) € X§ and p(w) € X} being the
grapheme and phoneme representations of w, re-
spectively.

2.2 Related Work

Many different approaches to G2P exist in the
literature, including rule-based systems (Black
et al., 1998), LSTMs (Rao et al., 2015), joint-
sequence models (Galescu and Allen, 2002), and
encoder-decoder architectures, based on convolu-
tional neural networks (Yolchuyeva et al., 2019),
LSTMs (Yao and Zweig, 2015), or transformers
(Yolchuyeva et al., 2020; Sun et al., 2019). In this
paper, we improve over previous work by explor-
ing two straightforward extensions of a standard
transformer (Vaswani et al., 2017) model for the
task: multi-task training (Caruana, 1997) and en-
sembling. Multi-task training has been explored
previously for G2P (Milde et al., 2017), with the
tasks being training on different languages and al-
phabet sets. Sun et al. (2019) successfully used
token-level ensemble distillation for G2P to boost
accuracy and reduce model-size, ensembling mod-
els based on multiple different architectures.

3 Proposed Approach

We submit two different systems to the shared task,
which are based on the transformer architecture,
multi-task learning, and ensembling. We describe
all components individually in this section.

3.1 Model

Our model architecture is shown in Figure 1; the
vanilla transformer proposed by Vaswani et al.
(2017). In short, the transformer is an auto-
regressive encoder-decoder architecture, which
uses stacked self-attention and fully-connected lay-
ers for both the encoder and decoder. The decoder
is connected to the encoder via multi-head attention
over the encoder outputs. Details can be found in
the original paper.

3.2 Multi-task Training

We propose to train our model jointly on two tasks:
(i) G2P and (ii) phoneme-to-grapheme conversion

124

Decoder

Output
Probabilities

Norm-+Dropout

Linear

Feedforward

Encoder

A

Norm-+Dropout

Multi-head
Affention

Norm+Dropout

Feedforward

Norm-+Dropout
Sell-Altention

Positional

Nx

Nx.

Norm+Dropout

Masked
Sell-Attention

Positional
Embedding

Target
Embedding

Target
Input

Embedding

Source
Embedding
Source

Input

Figure 1: The transformer model architecture.

Hyperparameter ‘ Value
Batch Size 128
Embedding Dimension 256
Hidden Dimension 1024
Dropout 0.3
Number of Encoder Layers 4
Number of Decoder Layers 4
Number of Attention Heads 4
Learning Rate le-3
B1 0.9
B2 0.998
Label Smoothing Coefficient 0.1
Max Norm (Gradient clipping) | 1

Table 1: The hyperparameters used in our experiments.

(P2G). Using our formalization from before, given
a word w, P2G corresponds to the mapping

p(w) = g(w). 2)

We denote the set of our original G2P training ex-
amples as D g9, and our P2G examples, which we
obtain by inverting all examples in D), as Dpag.
We then aim to obtain model parameters 6 that
maximize the joint log-likelihood of both datasets:

L) = > logpa(plw] | glw],Ag) + 3)
(wEDggp)
> logpa(glw] | plwl, Ap)
(wEDng)



Grapheme |Phoneme || Phoneme | Grapheme
laandacht|laindaxt|/?andaxt|aandacht
!basson bason ?bason |basson
!begint boyrnt |[?boyInt |[begint
lgierst Xirrst ?7xirrst gierst
'heup fig:p Theip heup

Table 2: G2P (left) and P2G (right).

Ag, Ap ¢ Y U Xp are special symbols which
we prepend to each input. These so-called rask-
embeddings indicate to our model which task each
individual input belongs to. Examples for both
tasks are shown in Table 2.

Intuition. By training our model jointly on G2P
and P2G, we expect it to learn properties that both
tasks have in common. First, both tasks require
learning of a monotonic left-to-right mapping. Sec-
ond, for some languages, X N Xp # (), cf. Table
2 for Dutch as an example. Symbols in X N Xp
are commonly mapped onto each other in both di-
rections, such that we expect the model to learn
this from both tasks.

3.3 Ensembling

Our second straightforward modification of the
standard transformer model is that we create en-
sembles via majority voting. In particular, each
of our two submitted systems is an ensemble of
multiple different models for each language, which
we generate using different random seeds. We then
create predictions with all models participating in
each ensemble, and choose the solution that occurs
most frequently, with ties being broken randomly.

Our first submitted model — CU-1 - is an ensem-
ble of 5 standard G2P transformers and 5 multi-task
transformers. Our second system — CU-2 — is an
ensemble of 5 multi-task transformers.

4 Experiments

4.1 Data

The datasets provided for the shared task spans 15
individual languages, with each training set consist-
ing of 3600 pairs of graphemes and their associated
phonemes. The datasets include an initial set of
core languages — Armenian (arm), Bulgarian (bul),
French (fre), Georgian (geo), Modern Greek (gre),
Hindi (hin), Hungarian (hun), Icelandic (ice), Ko-
rean (kor), and Lithaunian (lit) —, and a set of sur-
prise languages, which have been released shortly
before the shared task deadline — Adyghe (ady),
Dutch (dut), Japanese (hiragana) (jap), Romanian
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| CU-1 CU-2 CU-TB

| WER PER | WER PER | WER PER
arm | 13.56 275 | 1422 294 | 1610 3.37
bul | 29.11 698 | 3022 741 | 3206 7.32
fre | 800 200| 800 1.84 | 1029 2.65
geo | 2533 498 | 24.67 483 | 2603 5.20
gre | 1756  3.05 | 17.78 3.14 | 17.92  3.40
hin | 622 158 | 689 178 | 878 228
hun | 289 066 | 3.11 060 | 452 103
ice | 978 213 | 9.1 2131220 2.83
kor | 23.11 6.83 | 2422 661 | 2661 7.43
lit | 2156  4.11 | 22.44 418 | 22.88 441
ady | 2289 568 | 23.11 5.68 | 24.66 6.33
dut | 14.67 284 | 1444 263 | 1680 3.46
jap | 667 214 | 667 218 | 723 242
rum | 1222 3.5 | 1200 3.09 | 13.04 337
vie | 289 107 | 289 099 | 470 1.60
avg. | 1443 333 | 14.65 334 | 1625 3.80

Table 3: Development results in WER and PER; CU-
1=standard and multi-task transformer ensemble, CU-
2=multi-task transformer ensemble, CU-TB=standard
transformer ensemble.

(rum), and Vietnamese (vie). The data is primar-
ily extracted from Wiktionary using the wikipron
library (Lee et al., 2020).

4.2

Following the official shared task baseline, we em-
ploy the hyperparameters shown in Table 1. All
models are trained for 150 epochs. Starting from
epoch 100, we evaluate every 5 epochs for early
stopping. Encoder and decoder embeddings are
tied, and the maximum sequence length is 24. Our
system is built on the transformer implementation
by Wu et al. (2020), and our final code is available
on github.?

Hyperparameters

4.3 Maetrics

Word error rate (WER). Word error rate is the
percentage of words for which the model’s predic-
tion does not exactly match the gold transcription.
Phoneme error rate (PER). Phoneme error rate is
the percentage of wrong characters in the model’s
prediction as compared to the gold standard.

Both metrics are calculated using the official
evaluation script® provided for the shared task.

4.4 Development Results

The results on the development sets are shown in
Table 3. CU-TB represents a transformer baseline

https://github.com/NikhilPr95/
neural-transducer

*https://github.com/sigmorphon/2020/
blob/master/taskl/evaluation/evaluate.py



| Cu-1 CU2  SIG-TB SIG-LSTM
|WER PER|WER PER|WER PER|WER PER

arm | 12.89 2.91|13.56 3.04|14.22 3.29|14.67 3.49
bul |26.89 5.65|29.78 6.30(34.00 7.89(31.11 5.94
fre | 5.78 1.48| 5.56 1.28| 6.89 1.72| 6.22 1.32
geo |25.78 4.83|27.11 5.08|28.00 5.43|26.44 5.14
gre |15.11 2.51|14.44 2.42|18.89 3.06|18.89 3.30
hin | 6.67 1.58| 6.44 1.55| 9.56 2.40| 6.67 1.47
hun | 4.89 1.12| 5.11 1.15| 5.33 1.28| 5.33 1.18
ice | 9.56 2.11| 9.78 2.14|10.22 2.21|10.00 2.36
kor |30.67 9.22|31.56 8.79(43.78 17.5]46.89 16.78
lit |18.67 3.53|20.00 3.93|20.67 3.65|19.11 3.55
ady [26.00 5.87|26.22 6.31|28.44 6.49|28.00 6.53
dut |16.00 2.92|15.78 2.86|15.78 2.89|16.44 2.94
jap | 5.78 1.44| 6.00 1.47| 733 1.86| 7.56 1.79
rum | 10.44 2.35/10.89 2.41(12.00 2.62|10.67 2.53
vie | 2.67 1.12| 222 091| 7.56 2.27| 4.67 1.52

avg. [14.52 3.24]14.96 3.31|17.51 4.30(16.84

3.99

Table 4: Official Test results in WER and PER;
CU-1=standard and multi-task transformer en-
semble, CU-2=multi-task transformer ensemble,
SIG-TB=SIGMORPHON transformer baseline,
SIG-LSTM=SIGMORPHON LSTM baseline.

trained by us (an average of 5 models), while CU-1
and CU-2 are our submitted systems, which are de-
scribed in Section 3.3. CU-1 performs best with an
average performance of 14.43 WER and 3.33 PER,
followed by CU-2 with 14.65 WER and 3.34 PER,
respectively. Both CU-1 and CU-2 improve over
the baseline for each of the 15 languages, with an
average improvement of 1.82 WER and 1.6 WER,
respectively. Both systems show an average im-
provement of 0.47 PER over the baseline, perform-
ing better on all languages, with the sole exception
of Bulgarian, where the baseline slightly outper-
forms CU-2.

4.5 Official Shared Task Results

The results on the test set in Table 4 mirror our de-
velopment set results. Our systems CU-1 and CU-2
are compared with the two best official baselines:
a transformer (SIG-TB) and an LSTM sequence-to-
sequence model (SIG-LSTM). CU-1 gives the best
performance, with an average of 14.52 WER and
3.24 PER, followed by CU-2, with 14.96 WER and
3.31 PER. CU-1 shows an average improvement of
2.99 WER and 2.32 WER as well as 1.06 PER and
0.75 PER over SIG-TB and SIG-LSTM, respec-
tively. CU-2 shows an average of 2.55 WER and
0.99 PER and, respectively, 1.88 WER and 0.68
PER improvement. Compared to all system sub-
missions (Gorman et al.) CU-1 performs best on
Lithuanian, with 18.67 WER and 3.53 PER. CU-2

| T| TE| MT|MTE
arm | 16.10 | 15.11 | 14.89 | 14.22
bul | 3206 | 28.22 | 31.82 | 30.22
fre | 1029 | 822 | 880 | 800
geo | 26.03 | 25.78 | 25.29 | 24.67
gre | 17.92 | 17.78 | 17.60 | 17.78
hin | 878 | 667 | 7.20 | 6.89
hun | 452 | 31| 3.64 | 3.11
ice | 1220 | 10.00 | 10.53 | 9.11
kor | 26.61 | 2333 | 25.92 | 24.22
lic | 22.88 | 21.56 | 23.02 | 22.44
ady | 24.66 | 22.67 | 24.22 | 23.11
dut | 16.80 | 1533 | 15.11 | 14.44
jap | 723 | 667 | 684 | 667
rum | 13.04 | 12.89 | 12.31 | 12.00
vie | 470 | 4.00 | 338 | 2.89
avg. | 1625 | 14.76 | 15.37 | 14.65

Table 5: Results of our ablation study in WER;
T=standard transformer, T-E=standard transformer en-
semble, MT=multi-task transformer, MT-E=multi-task
transformer ensemble.

performs best on Modern Greek, with 14.44 WER
and 2.42 PER.

4.6 Ablation Study

We further perform an ablation study to explicitly
investigate the impact of our two modifications —
multi-task training and ensembling — with results
shown in Table 5. T and MT are the standard and
multi-task transformer, while T-E and MT-E are
the ensembled versions of the same. The ensem-
bles obtain better results: T-E shows an average
improvement of 1.50 WER over T, and MT-E out-
performs MT by 0.72 WER. Multi-task training
also leads to performance gains, with MT improv-
ing over T by 0.88 WER and MT-E over T-E by
0.11 WER, showing that the effect of multi-task
training is not as strong as that of ensembling. We
conclude that both multi-task training and ensem-
bling boost performance overall.

5 Conclusion

We described two CU Boulder submissions to SIG-
MORPHON 2020 Task 1. Our systems consisted
of transformer models, some of which were trained
in a multi-task fashion on G2P and P2G. We further
created ensembles consisting of multiple individual
models via majority voting.

Our internal experiments and the official results
showed that these two straightforward extensions
of the transformer model enabled our systems to
improve over the official shared task baselines and
a standard transformer model for G2P. Our final
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models, CU-1 and CU-2, placed 6th and 8th out
of 23 submissions, and obtained the best results
of all systems for Lithuanian and Modern Greek,
respectively.
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Abstract

Morphological inflection in low resource lan-
guages is critical to augment existing cor-
pora in Low Resource Languages, which can
help develop several applications in these lan-
guages with very good social impact. We de-
scribe our attention-based encoder-decoder ap-
proach that we implement using LSTMs and
Transformers as the base units. We also de-
scribe the ancillary techniques that we experi-
mented with, such as hallucination, language
vector injection, sparsemax loss and adversar-
ial language network alongside our approach
to select the related language(s) for training.
We present the results we generated on the con-
strained as well as unconstrained SIGMOR-
PHON 2020 dataset (Vylomova et al., 2020).
One of the primary goals of our paper was to
study the contribution varied components de-
scribed above towards the performance of our
system and perform an analysis on the same.

1 Introduction

Morphological inflection is the process of generat-
ing varied representations of words based on sev-
eral linguistic properties(gender, tense,etc). Inflec-
tions of words retain their core meanings, however
they differ in their word structure. As mentioned
by (Faruqui et al., 2015), morphological inflections
can be generated from the root word through two
primary methods: concatenative measures and non-
concatenative measures. In the case of concatena-
tive measures, suffixes and prefixes are added to
the original word to generate various inflectional
forms of the word. Non-concatenative inflectional
forms are generated by changing the basic structure
of the original word. The generation of inflectional
forms of a word has proved to be an asset in a wide
array of NLP tasks.

Prominent languages like English, Spanish,
French, etc. have large corpora that can be utilised

to train large scale machine learning applications.
However there are several languages in today’s
world that are not as well documented. These lan-
guages are termed as “low resource” languages.
Morphological inflection has proven to be an effec-
tive tool to augment the datasets of “low resource”
languages, so that they corpora can be better mod-
eled using NLP techniques.

To this end, several studies have been done on
morphological inflection on monolingual high re-
source settings, such as in the SIGMORPHON
2016, 2017, 2018 challenges. However, the low
resource setting has been extensively studied in the
SIGMORPHON 2019 and 2020 shared task (Vylo-
mova et al., 2020). The data in these tasks consists
of the form of [I, O, T], where I, O, T stand for
input lemma, inflected form and tags respectively.
The inflected form is essentially the inflected form
of the input lemma upon applying the tags specified
by T.

In this paper, we present an overview of the
various techniques that we implemented to per-
form the task of Morphological Inflection in both
the constrained and unconstrained settings. We
start by describing the different models that we ex-
perimented with to improve our performance on
this dataset. Furthermore, we describe hallucina-
tion, sparsemax/sparseloss, adversarial language
network and language vector injection techniques
that we prototyped to improve the performance of
our system. In order to understand the impact of
each component on the performance of the system,
we perform a detailed analysis on the influence of
these techniques on varied set of languages.

2 Related Works

In recent years there has been an increase in work
in the field of extremely low resource languages.
The work recent work done in the field of mor-
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phological inflection can be divided into two main
categories: Non-neural approaches and Neural ap-
proaches.

The non-neural based approach proposed by
(Cotterell et al., 2017) has two stages, alignment
and rule generation. A prominent work that com-
bines neural and non-neural approaches is that of
(Wu and Cotterell, 2019), where they seek to incor-
porate monotonicity as an inductive bias in their
approach and develop a cubic-time based dynamic
programming approach with a greedy decoding
scheme. The paper hypothesizes that the mono-
tonic attention-based models perform worse off
because they were not jointly trained to incorporate
the alignments.

Neural based approaches have recently outper-
formed the non neural based approaches. (Faruqui
etal., 2015) introduces a neural network based strat-
egy, for the task of morphological inflection gener-
ation, for languages that are morphologically rich.
The authors introduce an encoder decoder based
architecture which makes use of character level
embeddings. (Coltekin, 2019) on the other hand
adopts the idea from transition-based parsers where
the aim is to predict the parsing actions (copy, re-
place(c), insert(c), delete) in a given state of parser.
In the recent years attention based models have
gained huge popularity in Natural Language Pro-
cessing tasks. (Peters and Martins, 2019) intro-
duce a model inspired by sparse sequence to se-
quence models with a two-headed attention mech-
anism. The attention and output distributions are
computed with Sparsemax function and Sparsemax
loss is optimized. (Anastasopoulos and Neubig,
2019) introduce yet another attention based model
which is trained on multiple languages and tries
to leverage the knowledge learnt on high resource
languages for low resource languages. The authors
propose a novel two-step attention decoder archi-
tecture. Moreover, (Anastasopoulos and Neubig,
2019) augment low resource datasets with data hal-
lucination.

3 Methodology

We implemented four variants of Sequence to Se-
quence architectures to tackle the problem of mor-
phological injection. We primarily utilize LSTM
and Transformers (Vaswani et al., 2017) to con-
struct our models. Additionally we experimented
with four techniques Hallucination (Anastasopou-
los and Neubig, 2019), Sparse Max-Loss (Peters

129

and Martins, 2019), Language Adversarial Net-
work (Anastasopoulos and Neubig, 2019)(Chen
et al., 2019) and Language Vector Injection (Littell
etal., 2017).

3.1 LSTM Encoder Decoder (LSTM)

We prototyped an elementary LSTM sequence to
sequence model. We incorporated two LSTM en-
coders with each individual encoder taking the
input as the Lemma and Tags respectively. Fur-
thermore, we implemented two separate attention
heads one for the encoded representation of the in-
put Lemma and one for the encoded representation
Tags. The decoder was input the context vector and
the LSTM representations with the inflected form
being generated in an autoregressive manner. The
architecture can be seen in Figure 1.

Inflected
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Softmax

T

LSTM Decoder

[’ Ll
Attention Attention

I I

LSTM Encoder LSTM Encoder

Lemma Tags

Figure 1: Lstm Encoders Decoder (LSTM)

3.2 Transformer Encoders LSTM Decoder
(TELD)

Sequence Translation models such as Recurrent
Neural Networks or Convolutions Neural Networks
are typically trained in an encoder decoder config-
uration. Recently, the use of attention has shown
improvement in the performance of such models.
Thus we replace the LSTM encoders in the previ-
ous modules with Transformer encoder (Vaswani
et al., 2017). The rest of the architecture is the
same as presented in the LSTM model. We gen-
erate the output sequence using a LSTM Decoder.
The structure of the architecture is shown in Figure
2.
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Figure 2: Transformer Encoders LSTM Decoder

(TELD)

3.3 Transformer Encoders Transformer
Decoder (TETD)

We further replace the LSTM Decoder with a Trans-
former Decoder. The two Transformer Encoders
separate disparate encoder representations for the
Lemma and Tags respectively. We concatenate the
representations generated by the two Transformer
Encoders and feed it to the output Decoder. Since
the Transformer Decoder inherently has a multi-
head attention layer, we remove the explicit atten-
tion over the encoders. An outline of the model can
be seen in Figure 3.
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Figure 3: Transformer Encoders Transformer Decoder
(TETD)
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3.4 Joint Transformers (TJ)

The final architecture we implement is an end-
to-end Transformer model. We concatenate the
Lemma and the Tag and feed it to the Transformer.
The Transformer encoder learns a joint represen-
tation for the Lemma and Tag. And the decoder
generates the required output. A representation of
the architecture can be seen in Figure 4.

Inflected
Form

Transformer Decoder
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Figure 4: Joint Transformers (TJ)

3.5 Hallucination (HALL)

(Anastasopoulos and Neubig, 2019) incorporated
Hallucination techniques and observed a perfor-
mance boost in their system. Since the data for low
resource language is scarce, the distribution learnt
by the model for the language doesn’t match the
true distribution. To help alleviate this problem,
we use this data augmentation technique. In this
process each part is considered as a “stem”, char-
acters inside the region are randomly substituted
with other characters without changing the over-
all length. A detailed explanation can be found in
(Anastasopoulos and Neubig, 2019).

3.6 Sparse-Max and Sparse Loss (SPARSE)

Output vocabulary space can be potentially large
with some of the characters not being used as fre-
quently in the language. Sparsemax assigns exactly
zero attention weight to irrelevant source tokens
and implausible hypotheses and is shown to re-
turn sparse posterior distributions. This makes the
model output more interpretable and can also help
to filter out large output spaces. Sparseloss is the
loss typically associated with Sparsemax and is
known to be computationally very feasible. The
incorporation of Sparse-max and Sparse loss in a
manner similar to that of (Peters and Martins, 2019)



can be seen in Figure 5.
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Figure 5: Sparse-Max and Sparse Loss

3.7 Adversarial Language Network
(ADV-LANG)

In multilingual setting and in particular trying to
transfer knowledge between related language(s)
and a target language it is sometimes useful to
learn language agnostic representations. Thus we
implement a Language Adversarial Network which
encourages the same. We extract the representa-
tions generated at the first time step and the last
time step by the Lemma encoder and concatenate
these representations. This representation is then
passed through a linear layer and a softmax layer
which produces a prediction for the Language. We
then reverse the gradient while training. An illus-
tration of the same can be seen in Figure 6.

3.8 Language Vector Injection (LVI)

(Tsvetkov et al., 2016) show that vectors which
encode information about the genetics of language
outperform simple one-hot representations. The
lang2vec released by (Littell et al., 2017) repre-
sent languages using rich typological, geographical
and phylogenetic vectors. These vectors mainly
consist of binary language facts pertaining to the
language such as if negation precedes a verb, is
it represented as a suffix, if a language is part of
Germanic family, etc. with the value of each of
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Figure 6: Adversarial Language Network

these facts represented between [0.0, 1.0]. We pro-
pose that the injection of these rich vectors into
our model may increase the performance for low
resource languages where training data is scarce
and all round characteristics of a language cannot
be learnt just from the training data.

To integrate language vectors we first extract the
lang2vec vector for a particular language. We pass
it through a two layer dense neural network. This
provides us a compact representation for the vec-
tor. We then concatenate this representation with
the output representation generated by the decoder.
We then pass this through a softmax layer and the
output character is evaluated. The integration can
be seen in figure 7.

Furthermore we conducted a set of experiments
by initializing the hidden and cell states of the
(LSTM) model with language vectors but did not
see promising results.

3.9 Selecting Related Language(s) for given
Target Language

To select the related language(s) and target lan-
guage pairs for training, we utilised the precom-
puted feature distance present in the Lang2Vec
library(Littell et al., 2017). This distance is the
cosine distance between the vectors obtained by
combining the Geographical, Phonological, Syn-
tactic, Inventory and Genetic features present in
the Lang2Vec database. We assume that this dis-
tance accurately represents a metric to measure the
similarity between language pairs.
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4 Experimental Results

We performed our experiments on the data pro-
vided in the SIGMORPHON 2020 shared task. The
dataset consists of 90 languages. The data for each
language consisted of triplets in the {input, out-
put, tags} format, where the ‘output’ was the out-
put word generated after applying the morphologi-
cal tags as specified by ‘tags’ on the ‘input’ word.
The languages we split into two halves.The first
half consisted of 45 languages development lan-
guages and the latter half consisted of 45 surprise
languages.

We made submissions on all 90 languages for
two different settings, unconstrained and con-
strained. For the unconstrained setting we trained
our model in a cross-lingual manner. To comple-
ment the languages with a low number of training
examples we included genetically close languages
to augment the training process as explained above.
For the constrained setting we restricted our train-
ing to only a single language.

As explained above we implemented various
models such as (LSTM), (TELD), (TETD) and
(TJ) augmented with techniques such as (HALL),
(ADV-LANG), (SPARSE), (LVI). Since (HALL)
has proven to perform better than the original
setting we augment all languages with less then
10,000 training samples to a complete 10,000 train-
ing instances and thus all models and techniques
presented below are built on top of hallucinated
data. We present the results on a small subset of

languages (due to the space constraints) on the
development set (since we have results on all the
models we trained on the development set) for the
unconstrained and constrained settings in table 2
and table 3 respectively.

We did not experiment with hyperparameters
and had a constant set of hyperparameters for all
languages. We trained our models with the follow-
ing hyperparameters 1. A further fine-tuning per
language basis might have provided us with a more
competitive score. But since one of the primary
goals of our study was to understand the influence
of the various components on our system we did
not pursue this avenue in great detail.

We made a total of 5 submissions to the shared
task: 3 in the unconstrained settings and 2 in the
constrained setting. The submissions made to the
unconstrained section are the top 3 ranked results
we obtained on the development set and top 2 re-
sults for the constrained section.

Hyperparameter Value
Optimizer Adam
Initial Learning Rate | 0.001
State Size 1024
Embedding Size 256
Number of Heads 4
Dropout 0.3
Batch Size 32

Table 1: Hyperparameters used for training the 4 mod-
els

5 Analysis

Our approach of generating morphological in-
flections, encapsulates several models namely:
LSTM Encoder Decoders, Transformer Encoder
LSTM Decoder(TELD), Transformer Encoder and
Transformer Decoder(TETD) and Joint Transform-
ers(TJ). To supplement these models, we have
utilised additional strategies namely Adversarial
Language Networks, Language Vector Injection
and Sparse Max and Sparse Loss.

5.1 Analysis of Models Used

In our experiments, we saw that the Transformer
based models, usually outperformed LSTM based

132



Related Language(s)

Target Language (ISO 639-3) Model | L1+4L2 | ADV-LANG | SPARSE | LVI
LSTM | 0.81 0.83 0.81 0.83
Zulu gaa,lug,aka TELD | 0.83 0.84 0.83 0.86
TETD | 0.81 0.84 0.83 0.83
Chichicapan LSTM | 0.84 0.83 0.87 0.84
Zapotec azg,cly TELD | 0.87 0.88 0.88 0.88
TETD | 0.85 0.86 0.85 0.88

Yoloxéchitl LSTM | 0.86 0.89 0.87 0.88
Mixtec gmh,ang TELD | 0.84 0.84 0.84 0.83
TETD | 0.81 0.79 0.81 0.79

LSTM 1.0 1.0 1.0 1.0

Sotho nya,dan TELD | 0.98 1.0 0.96 1.0
TETD | 0.94 0.96 0.90 0.96

LSTM | 0.90 0.90 0.90 0.89
Luganda lin,zul,ceb TELD | 0.91 0.90 0.91 0.90
TETD | 0.82 0.83 0.82 0.82

LSTM | 0091 0.91 0.92 0.91
Livonian gmh,ang,kon,swa TELD | 0.92 0.92 0.94 0.92
TETD | 0.67 0.71 0.71 0.70
Classical LSTM | 0.94 0.92 0.83 0.94
Syriac ang TELD | 0.92 0.91 0.93 0.94
TETD | 0.93 0.92 0.94 0.93
LSTM | 0.79 0.78 0.83 0.80
Kannada nob TELD | 0.79 0.79 0.79 0.80
TETD | 0.77 0.75 0.79 0.57

Swiss LSTM | 0.87 0.86 0.87 0.87
German mlg,dan TELD | 0.85 0.88 0.86 0.85
TETD | 0.78 0.77 0.76 0.78

Table 2: Accuracy obtained on 6 languages from the SIGMORPHON 2020 dataset in the unconstrained setting,
where the languages were trained in conjunction with related language(s). Related language(s) have been presented

in their ISO 639-3 code format.

models in general for most language pairs. Specif-
ically, the Transformer encoder and LSTM de-
coder model showed the most optimal performance
across all the language pairs. The ability of Trans-
former based models to capture long-distance de-
pendencies, makes them more adept at generating
inflections for words that were longer in length.
This ensures that these models have a higher accu-
racy at the morphological inflection task as com-
pared to standard LSTM based models. We can
also observe that the joint transformer method was
the least optimal method for most language pairs.
We assume this is primarily because this method
encodes both the input lemma and tags together.
By encoding the lemma and tags together, we can-
not utilise the information present in the tags to
determine the next character to be generated during
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the decoding process.

5.2 Utility of Adversarial Language Network

As mentioned in (Anastasopoulos and Neubig,
2019), in a multi-lingual setting it is essential to
ensure that the output of the encoder should be
independent of the input language. This is vital
in the task of morphological inflection generation
for low resource languages. The primary reason
behind this, is that while training inflection gener-
ation systems, low resource languages are trained
with related language(s) that has a similar structure,
due to paucity of training data.

In the context of our experiments, the adversarial
language network was applied with each model that
we trained, to ensure that the output of the encoder
was language invariant. For the SIGMORPHON
2020 dataset, the use of adversarial language net-



Language | Model | SPARSE + LVI
LSTM 0.81
Zulu TELD 0.86
TETD 0.83
o LSTM 0.85
g:;};lellan TELD 0.88
TETD 0.87
. ... LSTM 0.87
;ﬁi"t’;‘gcmﬂ TELD 0.84
TETD 0.79
LSTM 1.0
Sotho TELD 1.0
TETD 0.94
LSTM 0.91
Luganda | TELD 0.90
TETD 0.80
LSTM 0.91
Livonian | TELD 091
TETD 0.82
Classical LSTM 0.94
Syriac TELD 0.93
TETD 0.93
LSTM 0.80
Kannada | TELD 0.80
TETD 0.80
Swiss LSTM 0.90
German TELD 0.89
TETD 0.80

Table 3: Accuracy obtained on 6 languages from the
SIGMORPHON 2020 dataset in the constrained set-
ting, where the languages were trained without using
any related language(s).

work was found to be beneficial for most of the
language pairs that we tested. However for some
of our models, performance remained unchanged
after the introduction of the adversarial language
network. We believe that the reason for this static
performance lies in the fact that the related lan-
guage(s) and target language we chose during train-
ing already possessed high structural similarity. We
hypothesize that this particular method would be
highly useful in cases where the related language(s)
and the target language pair differ widely in their
structure.

5.3 Use of SparseMax and Sparse Loss

In the SIGMORPHON 2020 challenge, this tech-
nique was useful for the Chichicapan Zapotec,Zulu
and Livonian languages. We hypothesize that this
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improvement in performance due to the addition of
SparseMax is primarily because of the large vocab-
ularies of these language pairs. For all the other lan-
guages that we tested, we noticed that we achieved
a similar level of performance after the incorpo-
ration of SparseMax. The addition of SparseMax
and Sparse loss aided the LSTM encoder-decoder
models to a greater extent as compared to the Trans-
former based models that we proposed.

5.4 Utility of Language Vector Injection

We seek to use language vectors to improve perfor-
mance for low resource languages where we find a
paucity of data. These vectors contain embedded
information about the language that we hope will
be useful while generating inflectional forms of in-
put lemmas. For the SIGMORPHON 2020 dataset,
the use of language vectors helped us improve per-
formance in almost all the language pairs that we
tested. We believe the structural information em-
bedded in the language vectors helped our model
efficiently generate morphological inflections.

6 Future Work

Due to the time constraints we were not
able to search through all combinations of
the techniques that were mentioned such as
LVI+SPARSE+LANG-ADV+NO-HALL and var-
ious others. Moreover, further fine-tuning the
model hyperparameters for each language could
have yielded better results.

Additionally multiple approaches to language
vector injection can be explored. The vectors can
be fed to the model at every-time step of the en-
coder by concatenating the input with the vectors or
the decoder by concatenating the language vector
to the context vector. This form of early injection
of the vectors may help the system perform bet-
ter. Another approach can be feeding the language
vector to the system in place of the <sos> token.

The limited availability of supervised data for
low resource languages makes it difficult to train
the various data hungry Neural Network models.
It has been shown that incorporation of unlabelled
data can help improve the performance of such
models and thus we propose to integrate a semi-
supervised approach by learning Language Models
over these low resource languages.These language
models inherently contain information about the ap-
propriate character sequences in a given language
and thus provide valuable information for predict-



ing the next character in the decoding process. We
propose to combine the probability generated by
the language model with the with probability gen-
erated by the inflection model and learn the interpo-
lation weights during training similar to the experi-
mental setup of that of (Faruqui et al., 2016).The
language model can be constructed using a basic
recurrent model or even complex models such as
BERT. (Devlin et al., 2018).

7 Conclusion

This paper presents a detailed description of the
models that we implemented to undertake the
“Typologically Diverse Morphological Inflection”
shared task. We describe our encoder-decoder
based approach using both LSTMs and Transform-
ers. We also describe the different supporting
techniques that we implemented, such as halluci-
nation, language vector injection, adversarial lan-
guage traning and sparsemax. We present a brief
subset of the results for the SIGMORPHON 2020
dataset. We also delve deeper and try to present
a detailed analysis of the different components of
our model and their influence on the performance.
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Abstract

The objective of this shared task is to produce
an inflected form of a word, given its lemma
and a set of tags describing the attributes of
the desired form. In this paper, we describe
a transformer-based model that uses a bidirec-
tional decoder to perform this task, and evalu-
ate its performance on the 90 languages and 18
language families used in this task.

1 Introduction

The world’s languages vary greatly in the richness
and complexity of their morphological inflection
systems. Indo-European languages such as Latin
or German tend to inflect words by adding suffixes
to a meaning-bearing root, while Austronesian lan-
guages like Malay or Tagalog use circumfixes to
change the forms of nouns and verbs. It is im-
portant that Natural Language Processing (NLP)
systems be able to generate inflected forms for a
variety of languages, which can be used in down-
stream tasks such as language modeling or machine
translation.

Task 0 of the SIGMORPHON 2020 Shared Task
(Vylomova et al., 2020) encourages the develop-
ment of morphological transduction models for a
variety of the world’s language families. Since the
task features such a diverse set of languages, it is
important to create a generalized model that is not
overly biased toward certain language typologies.

In this paper, we present the University of Illi-
nois submission to the task. We have modified
the baseline transformer model (Wu et al., 2020)
to use bidirectional decoding, following the work
in Zhou et al. (2019). We believe the additional
attention provided by the right-to-left decoding di-
rection improves performance on many of the lan-
guages in the dataset. Our model outperforms the
baseline transformer model on average rank and
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is among the best performing submissions for this
year’s task.

2 Task

The objective of Task 0 of the SIGMORPHON
2020 Shared Task (Vylomova et al., 2020) is to
build a system that learns to generate morpholog-
ical inflections. The model takes a lemma and a
group of morphosyntactic tags as input and outputs
the word inflected in the desired form. The follow-
ing example comes from the German dataset:

predigen + V;IMP;SG;2

b
predig

Here, we want to inflect predigen in the form speci-
fied by the tags V;IMP;SG;2, a 2nd person singular
imperative verb. The desired output is predig.

2.1 Dataset

The organizers of the task provide datasets for 90
languages in total. 45 languages are treated as
development languages — these languages span
the Austronesian, Germanic, Niger-Congo, Oto-
Manguean, and Uralic families, and were available
for several months. The remaining 45 languages
were released one week before the test sets and
are considered surprise languages — they span 16
families, 13 of which are not represented by the
development languages. The late release of these
languages encourages the development of models
that do not overly favor the development languages.

Each language has training and development
files that consist of lemmata, morphosyntactic tags
in the Unimorph Schema (Kirov et al., 2018), and
inflected forms. A test set was released for each lan-
guage one week before the deadline that contains
only lemmata and morphosyntactic tags. The lan-
guages vary widely in the amount of data provided:
for example, Finnish has approximately 100,000

Proceedings of the Seventeenth SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 137-145
Online, July 10, 2020. ©2020 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17
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training examples, while the Iranian language Tajik
has only 53 training examples. This large disparity
underscores the need for models that are not biased
toward certain datasets or languages.

3 Method

3.1 Motivation

Recent work on morphological inflection has
shown that an encoder-decoder framework using
transformers produces state-of-the-art results (Wu
et al., 2020). In our study, we have modified the
baseline transformer model to use bidirectional de-
coding — that is, the prediction of a character is
conditioned not only on the characters preceding it
but also on those following it.

This approach is linguistically motivated, be-
cause it is common for an inflectional affix to be
phonetically conditioned on the phonemes in its en-
vironment. For example, the underlying morpheme
a (a long a) marking the Latin present indicative
can be expressed as the allomorph a (a short a)
when followed by a stop consonant: laudas (2nd
sg.) vs. laudat (3rd sg.). Kazakh exhibits regres-
sive assimilation when adding the third person pos-
sessive suffix: the lemma kirap changes to kitabu.
Here, the vowel in the suffix precipitates the voic-
ing of the previous consonant.

It is standard to use bidirectional encoding to
capture context in the source word (Wu and Cot-
terell, 2019; Wu et al., 2018), but we believe that a
bidirectional decoder can better capture phonetic
and orthographic dependencies in inflected forms.
To our knowledge, no such method has been ap-
plied to a morphological transduction task before.

3.2 Previous Work

Neural models for morphological inflection have
been studied extensively in previous SIGMOR-
PHON Shared Tasks (Cotterell et al., 2017, 2018;
McCarthy et al., 2019). Successful approaches in-
clude encoder-decoder frameworks using recurrent
neural networks (RNN’s) with attention (Cho et al.,
2014; Wu and Cotterell, 2019; Wu et al., 2018).
Hard monotonic attention has been particularly suc-
cessful, due to the relatively rigid copy-like nature
of inflection. Recent advances in the transformer
architecture (Vaswani et al., 2017) have allowed
transformer-based encoder-decoder models to be-
come successful for inflection tasks as well (Wu
et al., 2020). Indeed, the organizers provide us
with two baselines: an RNN-based model with hard
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monotonic attention and a transformer baseline.

There has been some work on bidirectional de-
coding in the machine translation literature; how-
ever, we are unaware of any such work in mor-
phological transduction tasks. Zhang et al. (2018)
introduce an asynchronous bidirectional deocder
based on RNN’s; this approach first predicts the
target sequence in reverse and then attends over
this result to predict the target sequence left-to-
right. Zhou et al. (2019) use a transformer model
to predict both directions of the target sequence
simultaneously, producing state-of-the-art results
on translation tasks.

3.3 Model Architecture

Our model uses the technique of synchronous bidi-
rectional decoding (Zhou et al., 2019). In this ap-
proach, the decoder pursues predictions of the in-
flected form in both the left-to-right (L2R) and
right-to-left (R2L) directions simultaneously; that
is, the first and last letters of the form are predicted
first, then the second and second-to-last letters, and
so on. At each step of decoding, each direction
attends to the predictions of the other direction, so
that an entire L2R prediction has been conditioned
not only on itself but also on the R2L prediction. At
inference time, the highest probability prediction in
either direction is selected,; it is reversed in the case
that an R2L prediction has the highest probability.

In our implementation, the lemma and mor-
phosyntactic tags are first embedded and encoded
using the transformer-based encoder of the baseline.
The decoder has been modified from the baseline in
two ways. First, the decoder operates on previous
L2R and R2L outputs in parallel at each time step.
All weight matrices are shared between the two
directions, and so this model has the same number
of parameters as the baseline. Thus, the decoder
makes both an L2R and an R2L prediction at each
time step.

The second modification is the replacement
of the multi-head intra-attention mechanism with
a “Synchronous Bidirectional Attention” (SBAtt)
mechanism, which allows each direction to attend
to the opposite direction. The SBAtt mechanism
is mostly the same as the standard intra-attention
mechanism, except that the dot product attention
has been replaced with ”Synchronous Bidirectional
Dot Product Attention”. This can be summarized
as follows:



H"stor — Attention (5, Ez, 7)
HPure — Attention (6, ?, V)
ﬁ — Fusion (ﬁhismry’ ﬁﬁlture)

A similar equation holds for calculating E
Here, (), K, and V are the output hidden-state
matrices of the previous layer, and the forward and
backward arrows indicate the L2R and R2L matri-
ces respectively. Zhou et al. (2019) provides three
options for the Fusion function; given the empiri-
cal results of their study, we have used nonlinear
interpolation in our implementation:

ﬁ = (1 =\ ﬁhistory + Mtanh ﬁﬁzture
(1=2)

We perform inference with a modified beam
search. The algorithm tracks the £ best L2R hy-
potheses and the k best R2L hypotheses. At each
time step, the i™ best L2R hypothesis is paired with
the i best R2L hypothesis, and these are fed to the
decoder, which makes an L2R prediction and an
R2L prediction. In the end, we select the hypoth-
esis with the highest probability to length ratio; if
an R2L hypothesis is selected, it is reversed before
returning it.

3.4 Training & Model Conﬁguration

Given training examples {:1: y(l) 1, the model
is trained to maximize the likelihood of the training
data, accounting for both L2R and R2L probabili-
ties:

N %ZZ [logp@;” ‘g:(l), 72@2@

i=1j=1

We train the model to minimize the negative
log-likelihood loss function with label smooth-
ing (Szegedy et al., 2016). We use an Adam op-
timizer with 51 = 0.9 and 82 = 0.98. We em-
ploy a warmup-decay strategy for the learning rate
as described in Vaswani et al. (2017) using 4000
warmup steps and initial learning rate of 0.001.
Furthermore, special start-of-sentence tags (I2r)
and (r2[) are used as the input to the decoder at the
first step. A shared end-of-sentence token is used
for both directions.

We keep most hyperparameters fixed for all lan-
guages in the dataset and train a separate model for
each language. We use a batch size of 150, dropout
of 0.3, embedding dimension of 256, maximum
decoding length of 128, and gradient maximum /o
of 1.0. We tune the number of layers, the num-
ber of attention heads, the hidden dimension size,
the label smoothing parameter 00, and the lin-
ear interpolation parameter for the Fusion function
Afusion- The selection of these hyperparameters is
described in Section 3.5.

Models were trained for 50,000 steps, or until
accuracy on the development set flattened. In some
cases, the accuracy curve was still rising, so some
languages were trained to around 100,000 steps.
We choose the model checkpoint with the highest
development set accuracy to be used on the test
data.

3.5 Hyperparameter Selection

We train a separate model for each language in the
dataset and choose the hyperparameters by fam-
ily. We perform a grid search for two languages in
each family and select the best combination of hy-
perparameters based on accuracy on both of these
languages. Where possible, we try to select two
languages from different genera within a family,
and in some families there is only one language
present in the dataset. After selecting the optimal
hyperparameters based on these results, we train
individual models on each language in the family.
The hyperparameters we consider in our grid

search are as follows:

e Num. Layers € {4,6}

e Num. Heads € {4,8}

e Hidden dimension € {512,1024}
Asmoorh € {0.0,0.1}
)\fusiun S {0.1,0.5}
We chose these hyperparameters because they ap-
peared to cause variation in performance in our
initial experiments. After tuning the development
languages, it became clear that setting Afision to 0.5
almost always degraded performance, and so this
was left out of the hyperparameter search on the
surprise languages. Setting Mgy, = 0.1 is con-
sistent with the experimental results in Zhou et al.
(2019) on machine translation datasets. Table 3 in
Appendix A.1 shows the hyperparameters chosen
for each family.

There are some cases in which the languages
used for hyperparameter tuning achieve better per-
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Accuracy

Edit-Distance

Family MONO TRM  BI-TRM | MONO TRM BI-TRM
Afro-Asiatic 9293  95.67 96.37 0.11 0.05 0.05
Algic 67.20 68.70 70.30 1.26 1.20 1.16
Australian 61.40  90.00 87.80 0.92 0.27 0.26
Austronesian 77.66 81.28 82.30 0.58 0.44 0.41
Dravidian 86.05 87.10 85.30 0.48 0.46 0.54
Germanic 86.88  88.00 87.38 0.30 0.23 0.25
Indo-Aryan 97.78  98.02 98.18 0.05 0.05 0.04
Iranian 63.00 82.50 82.53 1.04 0.42 0.46
Niger-Congo 9772  97.72 97.87 0.04 0.04 0.03
Nilo-Sahan 0.00 87.50  100.00 2.88 0.19 0.00
Oto-Manguean | 82.71 86.59 87.49 0.49 0.32 0.28
Romance 95.51 99.25 98.72 0.12 0.02 0.03
Sino-Tibetan 83.20 84.40 84.40 0.22 0.20 0.21
Siouan 9290 95.60 94.90 0.16 0.08 0.10
Tungusic 5530 58.60 58.30 1.20 1.06 1.09
Turkic 9533  95.96 95.80 0.13 0.10 0.11
Uralic 83.21 88.34 88.18 0.39 0.29 0.28
Uto-Aztecan 76.30  80.80 82.50 0.49 0.41 0.39

Table 1: Macro-averages of accuracy and edit distance by language family. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional

decoder.

formance with hyperparameters other than those
selected for the family. In these cases, we used the
best-performing hyperparameters found during the
grid search. Table 4 in Appendix A.1 presents the
hyperparameters used for these languages.

4 Experimental Results

Table 2 shows the number of languages on which
our model is equal to or outperforms the baseline.

Acc. Avg. Edit Dist.
> > | < <
Development | 27 18 | 30 14
Surprise 29 13 | 33 15

Table 2: The number of languages (out of 45) on which
our model equals or outperforms (> and <) or strictly
outperforms (> and <) the best of the two neural base-
line models. It should be noted that on 5 of the de-
velopment languages and 7 of the surprise languages,
the baseline achieves perfect or near-perfect accuracy,
making these languages impossible to outperform.

It is clear that by either metric, our model equals or
outperforms the baseline on more than half of the
languages, demonstrating that our model generally
does not perform worse than the baseline.

Table 1 shows macro-averages of accuracy and
edit distance by language family. For both metrics,
our model outperforms the baseline transformer on
9 of the 18 language families and equals it on only
one family. Interestingly, the two metrics do not

agree on which families our model is best; when
considering either metric, our model outperforms
the baseline on 12 of the families.

Tables 5 and 6 in Appendix A.2 present full
results on every language in the dataset. It is inter-
esting to consider the L2R column, which indicates
the percentage of test examples on which an L2R
hypothesis was selected over an R2L hypothesis.
There is considerable spread in the values of this
column; this demonstrates that some languages
strongly prefer one direction over the other, while
others do not favor one direction in particular. It is
important to remember that even though the infer-
ence algorithm returns only the best L2R or R2L
hypothesis, the chosen direction is conditioned on
the opposite direction; therefore, a language that
appears to strongly prefer one direction may still
gain important insight from the opposite direction.

5 Conclusion & Future Work

The promising results of our experiments demon-
strate that some languages may be amenable to
bidirectional decoding; however, more investiga-
tion is required to fully understand the merits of
such an approach. For example, our results show
that some languages strongly favor L2R or R2L
hypotheses while others are less preferential. We
would like to determine if there are particular lin-
guistic features that make one direction more valu-
able than the other — for example, do inflected
forms with suffixes prefer L2R decoding while in-
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flected forms with prefixes favor R2L decoding?
We propose performing this analysis by exploring
correlations with linguistic features in the WALS
database (Dryer and Haspelmath, 2013).

We would also like to investigate how often each
direction produces the correct form, as well as the
percentage of examples on which the two directions
agree with each other. A high disagreement could
indicate a higher value in one direction with respect
to the other for a particular language. It would
also be informative to compare the bidirectional
decoding approach with a purely R2L transformer
baseline, in addition to the L2R baseline provided
by the organizers.

We also suspect that the bidirectional beam
search algorithm can be improved if the hypothe-
ses in one direction are paired with each of the
hypotheses in the opposite direction when fed to
the decoder at each time step. Furthermore, once
the halfway-point of the target form is passed in the
decoding, we should expect lots of overlap between
the L2R and R2L forms. We would like to see if
this information can be used to join the L2R and
R2L predictions to produce a better inflected form.

In initial experiments we noticed that on some
languages the bidirectional decoding model con-
verges in considerably fewer epochs than the base-
line transformer model, despite the same number of
parameters. We want to fully investigate this phe-
nomenon because, if it holds for many languages, it
means that the model can gain insight more quickly
with both directions than with just one.

Finally, in this work our models were trained
from scratch on each individual language. We
would like to investigate multilingual approaches
by training separate models on individual language
families or a single model for every involved lan-
guage. In these ways, we hope to demonstrate the
merits of bidirectional decoding and its implica-
tions for a morphological transduction task.
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A Appendices

A.1 Hyperparameter Selection

In this section we present the hyperparameters used
for each language. Tables 3 and 4 contain informa-
tion about specific hyperparameter configurations
for each family and for specific languages.
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Family | Languages | #Layers Hidden Size #Heads Asmooth

Afro-Asiatic CS’;‘I’;;‘: 6 512 4 0.0
Algic | Cree | 4 1024 4 0.0
Australian | Murrinh-Patha | 6 512 4 0.1
Austronesian legigg 6 1024 4 0.1
. Old English
Germanic Norwegian Bokmél 4 1024 8 0.0
Indo-Ayran Benaal 4 512 8 0.0
Iranian gzgslii‘; 4 1024 4 0.0
Niger-Congo L“Zglfl‘lllda 4 1024 4 0.0
Nilo-Sahan | Zarma | 4 1024 4 0.0
Yaitepec Chatino
Oto-Manguean Chichimeca-Jonaz 4 1024 4 0.1
Romance Alit;drilsn 6 512 8 0.0
Sino-Tibetan | Tibetan | 6 1024 8 0.1
Siouan | Dakota | 4 1024 8 0.0
Tungusic | Evenki | 1024 4 0.1
Turkic ‘ 5;‘2113; ‘ 4 1024 4 0.0
Uralic ‘ M\‘,’(ﬁf?a ‘ 4 512 4 0.0
Uto-Aztecan | O’odham | 6 1024 4 0.1

Table 3: Selected hyperparameters by family. The “Languages” column indicates the languages we used for
selecting the hyperparameters. The Dravidian family is not present, since it has exactly two languages; the hyper-
parameters for these languages can be seen in Table 4.

Family Languages # Layers Hidden Size # Heads M\g,,00tn
Afro-Asiatic Oromo 4 512 4 0.0
Austronesian Tagalog 6 1024 8 0.0
Dravidian Kannada 4 1024 8 0.1
Dravidian Telugu 4 1024 4 0.0
Germanic Old English 4 512 8 0.0
Oto-Manguean | Chichimeca-Jonaz 6 1024 8 0.1
Uralic Votic 6 512 8 0.0

Table 4: Selected hyperparameters for certain languages on which we performed a grid search. These languages
use different hyperparameters than their corresponding families, shown in Table 3, due to the fact that a more
optimal configuration was discovered.
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A.2 Complete Results Tables

In this section we show full results on each language.

. Accuracy Edit Distance
Famlly Language MONO TRM BI-TRM MONO TRM BI-TRM L2R
Cebuano 83.80 83.80  87.40 0.31 0.33 0.26 57.66
Hiligaynon 9240 97.90 96.60 022  0.09 0.10 26.47
Austronesian Maori 47.60  52.40 52.40 1.10 1.02 0.95 52.38
Malagasy 99.20 100 100 0.01 0 0 9.45
Tagalog 6530 7230  75.10 1.27 0.78 0.73 33.89
Old English 75.80  79.10 78.40 044 037 0.38 77.41
Danish 74.60  76.30 73.00 0.60  0.25 0.29 93.92
German 98.50  97.70 98.00 0.06 0.03 0.02 95.18
English 96.60  96.90 96.90 0.10  0.06 0.06 89.91
Germanic . North. Frisian 86.10 87.90 87.60 040  0.39 0.42 54.30
Middle High German 90.80 91.50  92.90 0.17  0.11 0.11 82.98
Icelandic 97.10 97.00  97.60 0.06 0.07 0.04 88.79
Dutch 98.90  99.00  99.50 0.02 0.02 0.01 79.48
Norwegian Bokmal 76.90  77.30 74.80 047  0.46 0.51 95.20
Swedish 98.80  98.70  99.00 0.08  0.02 0.02 92.04
Akan 100 100 99.90 0 0 0.00 67.23
Ga 100 97.60 97.00 0 0.04 0.05 52.66
Kongo 98.70  98.10  98.70 0.01 0.03 0.01 78.85
Lingala 100 100 100 0 0 0 67.39
Niger-Congo Luganda 90.00 91.20 92.80 0.17 0.13 0.11 46.47
Chewa 100 100 100 0 0 0 98.01
Sotho 100 98.00 98.00 0 0.03 0.03 91.92
Swabhili 100 100 100 0 0 0 72.64
Zulu 88.50  92.30 92.30 0.19 013 0.13 43.59
San Pedro Amuzgos Amuzgo | 93.50  94.70 95.20 0.17 0.13 0.12 21.12
Eastern Highland Chatino 78770  91.40 91.80 0.39 0.15 0.16 22.14
Tlatepuzco Chinantec 89.00 91.60  92.30 0.16  0.12 0.12 64.64
Yaitepec Chatino 4590 6120  62.50 2.28 1.00 0.97 63.71
Oto-Manguean Zenzontepec Chatino 7930  79.70 84.60 0.44 0.49 0.33 60.33
Mezquital Otomi 99.10  99.00  99.10 0.01 0.01 0.01 32.13
Sierra Otomi 97.90  98.20 98.00 0.06  0.05 0.05 8291
Chichimeca-Jonaz 74.60  74.50 74.20 0.59 0.60 0.57 63.96
Yoloxdchitl Mixtec 90.70  91.00  91.70 0.23 0.22 0.16 69.33
Chichicapan Zapotec 7840 84.60  85.50 0.55 0.39 0.32 75.44
Estonian 95.10  95.60 95.20 0.19  0.17 0.18 68.04
Finnish 99.60  99.60  99.70 0.02  0.01 0.01 62.97
Ingrian 68.80 87.10  87.50 0.60 0.24 0.23 86.16
Karelian 99.30 9930  99.50 0.04  0.01 0.01 50.79
Livonian 92.50  96.40 95.50 0.13  0.06 0.07 52.24
Uralic Moksha 92.80 93.90 93.60 024  0.18 0.19 81.11
Meadow Mari 93.30  92.90 92.60 0.19  0.15 0.16 85.81
Erzya 93.60 94.50 94.10 0.21 0.17 0.18 90.65
Northern Sami 99.60  99.60  99.70 0.01 0.01 0.01 69.86
Veps 82.70  84.80 83.30 045  0.25 0.27 84.56
Votic 69.40  86.10 84.30 049  0.21 0.24 51.25

Table 5: Results for individual languages in the development language set. MONO refers to the hard monotonic
baseline, TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional
decoder. The L2R column shows the percentage of words in each language for which our model selects a left-to-
right hypothesis as its final result. It should be noted that this column really indicates a “forwardness” percentage,
as languages with a right-to-left orthography are processed in a right-to-left manner.
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Accuracy Edit Distance

Famlly ‘ Language ‘ MONO TRM BI-TRM ‘ MONO TRM BI-TRM ‘
Maltese 88.70  97.20 96.60 022  0.05 0.05 67.99
Afro-Asiatic Oromo 98.30  99.00 98.00 0.03 0.02 0.04 30.86
Syriac 91.80  90.80 94.50 0.08 0.09 0.06 70.07
Algic ‘ Cree ‘ 67.20 68.70 70.30 ‘ 1.26 1.20 1.16 ‘ 69.34
Australian | Murrinh-Patha | 61.40  90.00 87.80 | 0.92 0.27 0.26 | 63.06
Dravidian Kannada 7730 78.30 76.10 0.70  0.67 0.76 60.15
Telugu 94.80 95.90 94.50 0.25 0.24 0.32 42.49
Middle Low German | 60.60  63.50 58.40 1.03 0.84 1.10 52.16
Germanic Swiss German 90.10  92.70 93.20 0.18 0.11 0.10 68.83
Norwegian Nynorsk | 84.60  86.40 86.60 0.24 0.21 0.20 85.76
Bengali 98.80 99.40 99.90 0.03 0.05 0.00 93.54
Indo-Arvan Hindi 100 100 100 0 0 0 75.07
y Sanskrit 9290 93.40 93.40 0.16 0.15 0.14 65.77
Urdu 9940  99.30 99.40 0.01 0.01 0.01 88.62
Persian 100 100 99.90 0 0 0.00 45.26
Iranian Pashto 89.00 91.20 91.40 030  0.25 0.25 62.85
Tajik 0.00  56.30 56.30 2.81 1.00 1.12 75.00
Niger-Congo | Shona | 100 100 00 | 0 0 0 | 85.31
Nilo-Sahan | Zarma | 0.00 87.50 100 | 288 0.19 0 | 43.75
Asturian 98.50 99.40 99.30 0.03 0.01 0.01 46.88
Catalan 99.60  99.80 99.80 0.01 0.00 0.00 84.35
Middle French 99.50 99.80 99.80 0.01 0.00 0.00 83.48
Romance Friulian 97.70  99.80 99.70 0.03 0.00 0.00 66.11
Galician 99.70  99.80 99.80 0.01 0.01 0.01 80.65
Ladin 99.00 99.50 99.50 0.02 0.01 0.01 61.38
Venetian 99.50 99.80 99.70 0.01 0.01 0.00 52.60
Anglo-Norman 70.60  96.10 92.20 0.82 0.10 0.18 60.78
Sino-Tibetan \ Tibetan \ 83.20 84.40 84.40 \ 022 0.20 0.21 \ 37.39
Siouan ‘ Dakota ‘ 9290 95.60 94.90 ‘ 0.16 0.08 0.10 ‘ 71.20
Tungusic | Evenki | 5530 58.60 5830 | 1.20 1.06 1.09 | 6555
Azerbaijani 79.50  82.20 81.90 042 034 0.34 87.70
Bashkir 99.60  99.80 99.80 0.01 0.00 0.00 69.80
Crimean Tatar 98.80  99.10 99.30 0.10  0.01 0.01 78.05
Kazakh 97.40  97.90 98.00 0.15 0.12 0.11 63.46
Turkic Kyrgyz 97.90  98.30 98.80 0.04 0.03 0.02 67.95
Khakas 99.20  99.60 99.60 0.01 0.00 0.01 81.67
Turkmen 86.50 87.40 85.60 0.45 0.42 0.50 82.09
Uyghur 99.50  99.50 99.70 0.01 0.01 0.00 48.17
Uzbek 99.60 99.80 99.50 0.01 0.01 0.02 67.58
Komi-Zyrian 96.30  96.90 96.90 0.11 0.07 0.07 75.61
Ludic 2410 32.90 32.90 2.14 2.35 2.13 68.29
Uralic Livvi 94.50 94.30 94.50 0.14  0.09 0.09 82.53
Udmurt 97.80 98.40 98.40 0.06  0.03 0.03 74.02
Voro 32.00 61.20 63.10 1.27 0.66 0.62 63.11
Uto-Aztecan | O’odham | 7630  80.80 82.50 | 049 0.41 039 | 6242

Table 6: Results for individual languages in the surprise language set. MONO refers to the hard monotonic baseline,
TRM refers to the transformer baseline, and BI-TRM refers to our implementation using a bidirectional decoder. The
L2R column shows the percentage of words in each language for which our model selects a left-to-right hypothesis
as its final result. It should be noted that this column really indicates a “forwardness” percentage, as languages
with a right-to-left orthography are processed in a right-to-left manner.
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Abstract

The task of grapheme-to-phoneme (G2P) con-
version is important for both speech recogni-
tion and synthesis. Similar to other speech
and language processing tasks, in a scenario
where only small-sized training data are avail-
able, learning G2P models is challenging. We
describe a simple approach of exploiting model
ensembles, based on multilingual Transform-
ers and self-training, to develop a highly effec-
tive G2P solution for 15 languages. Our mod-
els are developed as part of our participation
in the SIGMORPHON 2020 Shared Task 1 fo-
cused at G2P. Our best models achieve 14.99
word error rate (WER) and 3.30 phoneme er-
ror rate (PER), a sizeable improvement over
the shared task competitive baselines.

1 Introduction

Speech technologies are becoming increasingly
pervasive in our lives. The task of grapheme-to-
phoneme (G2P) conversion is an important com-
ponent of both speech recognition and synthesis.
In G2P conversion, sequences of graphemes (the
symbols used to write words) are mapped to corre-
sponding phonemes (pronunciation symbols, e.g.,
symbols of the International Phonetic Alphabet).
Members of the Special Interest Group on Com-
putational Morphology and Phonology (SIGMOR-
PHON) have proposed a G2P shared task (SIG-
MORPHON 2020 Shared Task 1) ! involving mul-
tiple languages. In this paper, we describe our sub-
missions to the shared task. Organizers provide an
overview of the task and submitted systems in Gor-
man et al. (2020) (this volume).

The task was introduced with data from 10 lan-
guages, with an additional 5 ‘surprise’ languages
released during the task timeline. Our goal was to
develop an effective system based on modern deep

'The shared task webpage is accessible at: https://
sigmorphon.github.io/sharedtasks/2020/taskl.

learning methods as a solution. However, deep
learning technologies work best with sufficiently
large training data. Hence, a clear challenge we
came across is the limited size of the shared task
training data for each of the 15 individual lan-
guages. To ease this bottleneck, we decided to
view the task through a multilingual machine trans-
lation lens where we build a single model mapping
from input to output across all the languages si-
multaneously. In this, we hypothesized that a mul-
tilingual model would allow for shared represen-
tations across the various languages that may be
more powerful than individual representations of
monolingual models. Abundant evidence now ex-
ists for approaching machine translation tasks from
a multilingual perspective (Johnson et al., 2017a;
Dong et al., 2015; Firat et al., 2016), which in-
spired our choice.

In order to make use of unlabeled data, we
also explore a straightforward self-training ap-
proach. In particular, we employ our trained mod-
els to convert sequences of multilingual unlabeled
graphemes, taken from Wikipedia data, into mul-
tilingual phonemes. We then select sequences of
phonemes predicted with our models above a cer-
tain confidence threshold to augment the shared
task training data, thus re-training our models with
larger (gold and silver) training data from scratch.
Our models are based on the Transformer archi-
tecture which exploits effective self-attention. We
show that both our multilingual model and the self-
trained variation outperform the results of the com-
petitive baseline monolingual models provided by
the task organizers. Ultimately, we demonstrate
how our simple modeling choices enable us to pro-
vide an effective solution to the problem in spite of
the low-resource challenge. Intrinsically, our ap-
proach also enjoys the simplicity of a single model
rather than 15 different models.

The rest of the paper is organized as follows:
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Section 2 is a description of the shared task data,
evaluation metrics, and baselines. Section 3 in-
troduces both our fully supervised, multilingual
models (Section 3.1) and self-trained model (Sec-
tion 3.2). We present our results in Section 4. We
provide an analysis of results and report on an abla-
tion study in Section 5. We overview related work
in Section 6, and conclude in Section 7.

2 Task Data, Evaluation, and Baselines

The data provided by the organizers of the shared
task are extracted from Wiktionary? using the
WikiPron library (Lee et al., 2020), and consist of
4,050 gold labeled grapheme-phoneme pairs for
each of 15 languages, split into a training set
(3,600 per language) and a development set (450
per language). The blind test data comprise 450
sources for each language. The data involves lan-
guages in the set {Adyghe (ady), Armenian (arm),
Bulgarian (bul), Dutch (dut), French (fre), Geor-
gian (geo), Modern Greek (gre), Hindi (hin), Hun-
garian (hun), Icelandic (ice), Japanese hiragana
(jpn), Korean (kor), Lithuanian (lit), Romanian
(rum), Vietnamese (vie)}.> This set of languages
employ a variety of writing systems: alphabets
(e.g. French), alphasyllabary (e.g. Hindi), and syl-
labary (e.g. Japanese hiragana), thus introducing
enough diversity and modelling challenge. Table 1
shows sample pairs from training data across 5 lan-
guages.

Language Source Target (IPA)
Alphabet:
arm whbn ahesp
lhwpdbp ljarzekh
front fyor
fre N
vetu vety
Alphasyllabary:
. dikParva
hin l
el Aotna:
A kebjak
kor
2 i opa
Syllabary:
o Wiz h inadi
P PHA  jasén

Table 1: Sample pairs from training data

Evaluation. For evaluation, the task organizers

"https://www.wiktionary.org/.
*We use three-character ISO-639-2 abbreviations as not
all of the task languages have ISO-639-1 codes.
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use both Word Error Rate (WER) and Phoneme Er-
ror Rate (PER). WER is the percentage of words
whose predicted transcription does not match the
gold transcription; PER is the micro-averaged edit
distance between predicted and gold transcriptions.
We follow this set-up in evaluating our models on
the development data as well, as reported in this
paper.

Baselines. Organizers provide a number of
monolingual baselines. The first is a pair n-
gram model encoded as a weighted finite-state
transducer (FST), implemented using the Open-
GRMtoolkit *.  The second is a bi-LSTM
encoder-decoder sequence model implemented us-
ing the Fairseq toolkit °. The third is a Trans-
former model also implemented using the Fairseq
toolkit. Organizer-provided shared task baselines
are shown in Table 2 as WER and PER averages
over the 15 languages. We now introduce our mod-
els.

Avg over 15 langs
Model WER PER
FST 22.00 4.92
Bi-LSTM 16.84 3.99
Transformer 17.51 430

Table 2: Baseline performance as avg. WER and PER
over the 15 languages as provided by task organizers.
Baselines exploit monolingual models.

3 Models

As explained, our models are based on Transform-
ers and we offer two primary types of models, de-
pending on how we supervise each. We first intro-
duce fully supervised multilingual models, then we
introduce our semi-supervised models (also mul-
tilingual). Our semi-supervised models follow a
self-training set up. We now explain each of these
models.

3.1 Supervised, Multilingual Models

We use a multilingual approach where we train a
single model on data from all 15 languages. For
this purpose, we prepend a token comprising a
language code (e.g. fre) to each grapheme se-
quence source. For our implementation, we use

*http://www.opengrm.org/twiki/bin/view/GRM.
https://github.com/pytorch/fairseq.



the PyTorch Transformer architecture in the Open-
NMT Neural Machine Translation Toolkit (Klein
et al., 2017). We set the model hyper-parameters
as shown in Table 3, which follows those adopted
by Vaswani et al. (2017).

Hyper-Parameter Value
Number of layers 6
Hidden state size 512
Word embedding size 512
Hidden feed-forward size 2,048
Number of self-attention heads 8
Optimizer Adam
Dropout probability 0.1
Number of training steps 200K

Table 3: Multilingual Transformer hyper-parameters.

We train the model with 3 different random
seeds, and at inference we employ an ensemble
consisting of the models from 4 training check-
points (at 50k, 100k, 150k, and 200k steps) for
each of the 3 models generated by the random
seeds. We note that OpenNMT averages individ-
ual models’ prediction distributions, which is how
we deploy our ensemble. We use beam search with
the OpenNMT default beam width of 5. ©

3.2 Self-Trained Model
3.2.1 Wikipedia Data Augmentation

One of the models we submitted to the task em-
ploys a self-training approach, as a way to augment
training data. The additional data is sourced from
Wikipedia articles from 12 of the 15 languages (ex-
cluding Adyghe, Japanese, and Vietnamese) 7. We
download the Wikipedia dumps from the Wikime-
dia website ® and use an off-the-shelf tool ° for ex-
tracting text. Further pre-processing involved re-
moving any remaining XML markup, discarding
leading and trailing punctuation and numerals for
each word, and ignoring any words with remaining
word-internal punctuation or numerals.

Due to time constraints, only one million words
from each language were used, and from those
only unique entries were submitted to the model

*We also experimented with beam size 10, but did not ob-
tain improvements on the development set.

"We note that there is no Adyghe Wikipedia. Also, the
Japanese Wikipedia is not strictly in Hiragana and so we ex-
clude it. By mistake, we did not include Vietnamese either.
Clearly, we average results from the self-training models only
on the languages for which we augment the data.

$https://dumps.wikimedia.org/.

‘https://github. com/attardi/wikiextractor
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for translation and subsequent evaluation as poten-
tial candidates for augmenting training data. Ta-
ble 4 summarizes the size of the Wikipedia data
used for each available language. Selection meth-
ods and thresholds are discussed in Section 3.2.2.

Language Translated Selected
arm 9,947 4,723
bul 9,999 3,197
dut 2,275 860
fre 9,985 2,888
geo 5,038 3,043
gre 9,949 3419
hin 1,450 727
hun 10,000 3444
ice 9,839 3,719
kor 4282 2,681
lit 7,033 3,615
rum 9,785 3,102
Total 89,582 35418

Table 4: Number of Wikipedia words translated vs.
number of words selected for self-training.

3.2.2 Procedure

As explained, self-training data is drawn from the
translations of Wikipedia text in 12 languages as
predicted by an ensemble model. In order to select
pairs to augment the training set, we first calculate
the mean per-class softmax value in the develop-
ment set (which we find to be at 0.11). '© Com-
paratively, the average per-class softmax value for
the predicted Wikipedia targets for each language
ranges from 0.12 to 0.30. Based on this analysis,
we select only those Wikipedia pairs whose pre-
dicted targets have a probability greater than 0.2, !
The selected data are combined with the original
(i.e., from official task) training set and the models
are re-trained using the same hyper-parameters as
the fully-supervised setting.

4 Results

Both models demonstrate lower word error rates
(WER) and phoneme error rates (PER), averaged
across languages, than the baseline monolingual

19As is known, the softmax function produces a probability
distribution over the classes.

"There could be different ways to select predicted data for
augmentation. For example, one can arbitrarily choose the top
n% most confidently predicted points (with n being a hyper-
parameter).



Multilingual Self-trained
Lang WER PER WER PER
ady 2556 640 25.11 647
arm 16.67 337 16.89 3.37
bul 2844 7.30 2733 7.12
dut 1600 2.84 1533 284
fre 822 196 844 192
geo 2444 492 2622 522
gre 1511 272 1622 3.00
hin 644 1.66 6.89 1.89
hun 289 054 3.56 0.66
ice 956 1.88 10.89 223
jpn 733 218 7.11 211
kor 2422 654 2600 6.50
lit 2000 4.11 21.11 3.96
rum 1200 2.94 11.78 297
vie 556 1.77 556 191
avg 14.83 341 1523 348

Table 5: Development set results for fully-supervised
multilingual and self-trained multilingual models.

models provided by the task organizers (see Ta-
ble 2 in Section 2). Error rates per language are
shown in Table 5 for the development set and Ta-
ble 6 for the blind test set (results published by or-
ganizers). Table 7 shows examples of prediction
errors, which demonstrate some of the typical mi-
nor errors in phenomena such as voicing (e.g. k vs.
g), epenthesis and elision (e.g. psuvs. psul),
and coarticulation (e.g. bl vs. b).

On average, the fully-supervised models per-
formed slightly better than the self-trained model.
We expected that the self-trained model would see
(at least slightly) better performance than the fully
supervised; however, due to time constraints, we
were not able to augment the training data to such a
degree that this hypothesized improvement would
be tangible. We leave it as a question for the fu-
ture whether, and if so to what extent, self-training
can improve our models. We now provide an anal-
ysis of our findings and report on an ablation study
under a number of settings.

5 Analysis & Ablation Study

We suspected that languages with shared writing
systems (in our multilingual models) would ben-
efit from the shared representation and hence see
better results, posing a challenges to those lan-
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Multilingual Self-trained
Lang WER PER WER PER
ady 2844 646 29.11 646
arm 13.11 298 12.89  3.07
bul 2711 5091 30.89 692
dut 1578 298 16.89 3.07
fre 533 124 578 136
geo 2600 5.25 2667 523
gre 16.67 2.68 1578 2.60
hin 644 158 6.67 1.66
hun 467 105 422 098
ice 956 2.11 9.11 1.83
jpn 600 144 6.00 140
kor 3222 854 3244 8.86
lit 1933 3.63 20.00 3.68
rum 933 196 1044 223
vie 489 1.66 400 1.28
avg 1499 330 1539 337

Table 6: Blind test set results for fully-supervised mul-
tilingual and self-trained multilingual models.

guages with unique orthography (i.e., orthography
not shared by o=any of the other languages con-
sidered). However, our results do not support this
hypothesis; there did not appear to be a significant
correlation between writing system and results on
G2P conversion. For example, a total of 7 of the
languages (i.e., dut, fre, hun, ice, lit, rum, vie) use
the Roman alphabet, but the WERSs for these lan-
guages cover a reasonably wide range (from first-
to eleventh-best) of the results. It is worth not-
ing, however, that the two languages that use the
Cyrillic alphabet (ady, bul) were the two worst-
performing languages of the set.

Both prior and subsequent to the task deadline,
we performed several ablations in order to assess
the effectiveness of our approach. First, we com-
pare results based on single models vs. those based
on the ensemble. Table 8 shows the error rates
of development set translation by the four train-
ing checkpoints used in the ensemble, in this case
trained with the default (random) seed. Given that
each of these results is poorer than our ensemble re-
sults for the multilingual model (WER 14.83 / PER
3.41), it is clear that the ensemble approach is supe-
rior. Clearly, the ensemble has the advantage of ex-
ploiting multiple predictions for each word. This
does result in reduced error rates as compared to
individual models.



Lang Source Target Prediction
ququpul zuk"aran zugaran
arm
wbpubw anyoena anyna
fre full ful fyl
proulx pEBU peul
hin g dionjo dionj
EECIC) medirbarni: merfiorbarni:
o Ze% kodama kotama
P UOZ5 ¢izo: ¢izo:
um ceri tfer tfer
iubeau jubau jubeaw

Table 7: Sample prediction errors from development data.

Avg over 15 langs

Checkpoint WER PER
50k of 200k steps 16.70 393
100k of 200k steps 16.04 3.69
150k of 200k steps 16.25 3.78
200k of 200k steps 15.73 3.65
Ensemble 14.83 341

Table 8: Development set results for individual models
vs. our ensemble

We also compare our multilingual model's er-
ror rates on a given language to those acquired
by the respective monolingual models. We note
that each of the monolingual models is otherwise
initialized with the same parameters as the multi-
lingual model described in Section 3.1. Results
for the 15 monolingual models are shown in Ta-
ble 9. The average WER across all languages
is almost twice as big as that of our multilingual
model (whether individual or ensemble), and the
per-language results are worse across the board
as well. The monolingual Georgian WER (25.33)
was the only result to approach its multilingual
counterpart (24.44). Our multilingual approach is
clearly a significant improvement over otherwise
equivalent monolingually-trained models.

6 Related Work

Various data-driven models have been success-
fully applied to G2P conversion. In terms of En-
glish conversion, Bisani and Ney (2008) use co-
segmentation and joint sequence models for early
data-driven G2P. Novak et al. (2016) employ a
joint multigram approach to generate weighted
finite-state transducers for G2P. Recently, neural
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Monolingual
Lang WER PER
ady 3356 931
arm 2400 5.65
bul 4133 1207
dut 3089 7.73
fre 3489 12.69
geo 2533 5.9
gre 2400 5.13
hin 2267 6.76
hun 2089 530
ice 3022 11.12
jpn 1178  3.73
kor 30.67 9.17
lit 2600 7.5
rum 2000 552
vie 3200 13.75
avg 2722  8.06

Table 9: Development set results for monolingual mod-
els.

sequence-to-sequence models based on CNN and
RNN architectures have been proposed for the
G2P task delivering superior results compared to
earlier non-neural approaches (Chae et al., 2018;
Yolchuyeva et al., 2019a). Similar to our ap-
proach, Yolchuyeva et al. (2019b) use transform-
ers (Vaswani et al., 2017) to perform English G2P
conversion.

Multilingual training is a crucial component in
our system. Our approach is closely related to
multilingual neural machine translation (Johnson
et al., 2017b), where a single model is trained to
translate between multiple source and target lan-



guages. Others have also explored multilingual ap-
proaches to G2P. Deri and Knight (2016) use mul-
tilingual G2P conversion for the purpose of adapt-
ing models from high-resource languages to train
weighted finite-state transducers for related low-
resource languages. Ni et al. (2018) experiment
with multilingual training for deep learning mod-
els. They use pretrained character embeddings
with LSTM encoder-decoders in order to train mul-
tilingual G2P models for Chinese, Japanese, Ko-
rean and Thai. In contrast to Ni et al. (2018), we
inspect multilingual training in the context of trans-
former models.

For our second model, whose training data is
augmented from Wikipedia, we use a self-taining
method. Sun et al. (2019) investigate self-training
together with ensemble distillation for English
G2P conversion, using transformer models. Their
setting resembles ours: A teacher model is first
trained using a gold standard labeled G2P train-
ing set. The teacher model is then used to label
additional grapheme data, producing a silver stan-
dard training set. Subsequently, a model ensemble
is trained on the combination of the gold and sil-
ver data. Sun et al. (2019) train on nearly 200k
gold standard examples and 2M silver standard ex-
amples and report small improvements. In con-
trast, we do not observe improvements from self-
training. This might be a consequence of the small
size of the shared task datasets and our silver stan-
dard Wikipedia data.

7 Conclusion

We introduced a multilingual approach to G2P con-
version, exploiting Transformers in a fully super-
vised multilingual setting. Strikingly, our choice
to model all languages in a shared, nultilingual
space reduces error rates (in WER and PER) by
almost one half. We also showed how an ensem-
ble of individually-trained multilingual Transform-
ers, is an improvement over non-ensemble models.
We also leveraged multilingual Wikipedia data via
a self-training strategy, though due to time con-
straints we were not able to incorporate enough
silver labeled data into training to see the results
we had hoped for'2. Nevertheless, the multilin-
gual models successfully surpassed all organizer-
provided baselines on the task and compared fa-
vorably to several other submitted models. Our fu-

2Training on all available Wikipedia data is in progress at
the time of this paper’s submission
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ture work includes scaling up our self-training with
larger Wikipedia data and choosing fully-trained
models (e.g., in our case ones at 200K steps) to in-
clude in the ensemble.
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Abstract

This paper presents the submission by the CU
Ling team from the University of Colorado to
SIGMORPHON 2020 shared task 0 on mor-
phological inflection. The task is to generate
the target inflected word form given a lemma
form and a target morphosyntactic description.
Our system uses the Transformer architecture.
Our overall approach is to treat the morpholog-
ical inflection task as a paradigm cell filling
problem and to design the system to leverage
principal parts information indirectly for bet-
ter morphological inflection when the training
data is limited. We train one model for each
language separately without external data. The
overall average performance of our submission
ranks the first in both average accuracy and
Levenshtein distance from the gold inflection
among all submissions including those using
external resources.

1 Introduction

The task of morphological inflection is to gener-
ate a target inflected word form (henceforth rgz-
form) given a lemma form (henceforth lemma) and
a target morphosyntactic description (henceforth
tgtmsd). In the SIGMORPHON 2020 shared task
0 on morphological inflection (Vylomova et al.,
2020) and previous years’ SIGMORPHON shared
tasks on morphological inflection (Cotterell et al.,
2016, 2017a, 2018; McCarthy et al., 2019), the
training data is provided in the format of tab-
separated lemma-tgtmsd-tgtform triples, and partic-
ipating systems are expected to predict the missing
target forms in the test data released shortly before
prediction submission.

The sequence-to-sequence (henceforth seg2seq)
architecture has been very successful in dealing
with morphological inflection, especially when
there are abundant labeled data for training. The
accuracies and Levenshtein distances on the devel-
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(a) baseline (Fairseq) model (b) 1-src model

tgtform
A 4
tTransformer‘ 'Transformer]
A 1

[Iemma tgtmsd] [srcform srcmsd # tgtmsd]

(c) 2-src model

A

!Transformer}

1\

[srcform1 srcmsd1 # srcform2 srcmsd2 # tgtmsd|

Figure 1: Illustration of general model architectures.
All three of our models use the Transformer architec-
ture for inflection. They are different from each other
by the input to the Transformer model.

opment data inflected by 9 baseline models are pro-
vided for the 45 typologically and genealogically
diversified development languages: a non-neural
model based on lemma-tgtform alignment and
transformation, a per-language Transformer model,
a per-language-family Transformer model, a per-
language Transformer model with data augmen-
tation, a per-language-family Transformer model
with data augmentation, LSTM seq2seq models
with exact hard monotonic attention (Wu and Cot-
terell, 2019) trained per language, per language
family, per language with data augmentation, and
per language family with data augmentation respec-
tively. The data augmentation method used by the
baseline models is from Anastasopoulos and Neu-
big (2019). The baseline numbers indicate that the
Transformer model for character-level transduction
(Wu et al., 2020) is very competitive, achieving
the highest average accuracy and lowest average
edit distance and best performance on most lan-
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guages (33 out of 45) when the model is trained per
language. Therefore, we adopt the Transformer ar-
chitecture (Vaswani et al., 2017) for all three of our
models (see Figure 1) which are different from each
other by the input and output to the Transformer
model, as will be presented in section 3.

Though not explicitly organized as a paradigm
cell filling problem (PCFP) (Ackerman et al., 2009)
task, the shared task is closely related to and can
largely be seen as a computational instance of it
(Malouf, 2016, 2017; Cotterell et al., 2017a; Silfver-
berg et al., 2018; Silfverberg and Hulden, 2018),
where some slots are given in the paradigms as
training data and others are to be inflected as de-
velopment data or test data.! The data format of
the shared task privileges the lemma as the source
form (henceforth srcform) which all tgtforms are
inflected from. However, the lemma form may not
be the only and the most informative srcform to
inflect all other slots from in the same paradigm.
Morphologists refer to a lexeme’s principal parts
(Finkel and Stump, 2007) as the minimum subset
of paradigm slots which, if known, provide all the
information needed to generate the other slots in its
paradigm. The principal parts which best predict
an inflected form in a lexeme’s paradigm do not
necessarily include the lemma, and more than one
of the principal parts may be needed to generate
an inflected form reliably (see examples in Table
1 analyzed in section 3.2). Considering this, we
convert the shared task of morphological inflection
to the paradigm cell filling problem, and incorpo-
rate the principal part intuition into the inflection
system. Our approaches achieve better or equally
good performance compared to the official base-
lines for most (19 out of 24) relatively low-resource
languages we experimented with.

To generate inflected forms for the test data
for submission, our system uses the same input-
output format as the baselines for high-resource
languages, and includes two slightly different ap-
proaches of leveraging principal parts information
for low-resource languages. The evaluation results
indicate that the Transformer model augmented
with principal parts information can handle mor-
phological inflection very well for typologically
and genealogically diverse languages, whether it

!This does not hold perfectly—some languages have held-
out data that come from paradigms where no form is ever
witnessed in the training data, but these are a minority. We
overcome this problem by adding an additional slot (tagged as
POS; CANONICAL) for the lemma in the paradigm.
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has been tuned on the language or not, even when
the training data is limited.

2 Task and data description

The SIGMORPHON 2020 shared task 0 (Vylo-
mova et al., 2020) is a typical morphological inflec-
tion task. Compared to previous years’ SIGMOR-
PHON shared tasks on morphological inflection,
this year’s task highlights the distinction between
development languages and surprise languages and
the inflection model’s ability to generalize to new
languages that may be genetically related or un-
related to the languages according to which it is
developed. In the development phase, 45 languages
from 5 language families were provided, and these
languages are development languages. In the gen-
eralization phase, 45 surprise languages from 16
language families were released. In the evalua-
tion phase, test data include both development lan-
guages and surprise languages.

Deviating from previous years’ tasks, this year’s
task did not feature different (low/medium/high)
data settings for the languages (Cotterell et al.,
2017a, 2018) or manipulate the data size of ge-
netically related language pairs (McCarthy et al.,
2019). Instead, each language comes with differ-
ent amount of training, development and test data,
corresponding to the reality of data availability for
the language. Of the total 90 languages from 18
language families, 44 have 5,000 or more lemma-
tgtmsd-tgtform training triples and 46 have fewer
than 5,000. Of the 45 development languages, 24
have fewer than 5,000 training examples. In this
paper, we refer to languages with 5,000 or more
training triples as high-resource and those with
fewer than 5,000 training triples as low-resource.

3 System description

All our models use the self-attention Transformer
architecture (Vaswani et al., 2017) as implemented
in the Fairseq (Ott et al., 2019) tool, a PyTorch-
based sequence modeling toolkit. Both the encoder
and decoder have 4 layers with 4 attention heads,
an embedding size of 256 and hidden layer size of
1024. Models are trained with the Adam algorithm
(Kingma and Ba, 2014) for optimization with an
initial learning rate of 0.001, a batch size of 400,
0.1 label smoothing, the gradient clip threshold as
1.0, and 4,000 warmup updates. The models are
trained for a maximum of 20,000 or 30,000 opti-
mizer updates depending on the amount of input-



ID MSD Lexemel Lexeme2 Lexeme3 Lexeme4 LexemeS
1 V;CANONICAL pahinga bayad pukpok linlang galing
2 V;AGFOC;LGSPECI1 — magbabayad manumukpok lanlilinlang gagaling
3 V;IPFV;AGFOC ? nagbabayad namumukpok nanlilinlang gumagéling
4  V;IPFV;PFOC *  binabayaran pinupukpok  nililinlang  iginagaling
5  V;NFIN pahinga bayad pukpok linlang giling
6  V;PFOC;LGSPECI1 * babayaran pupukpukin ? igagéling
7 V;PFV;AGFOC nagpahinga nagbayad namukpok  nanlinlang gumaling
8  V;PFV;PFOC * binayaran pinukpok nilinlang iginaling

Table 1: Example of reconstructed paradigms from Tagalog data. — are slots in the development set, 2 are slots
in the test set, * are slots which didn’t appear in the shared task data, and other slots which are filled with inflected

forms are slots in the training set.

output tuples for training, with checkpoints saved
every 10 epochs. The checkpoint with the smallest
loss and the last checkpoint are also saved. The
model with the best parameters was selected from
all the saved checkpoints based on the accuracy
on the development data. Beam search is used at
decoding time with a beam width of 5.

Our submission is an ensemble of predictions
from three types of models: baseline (Fairseq), 1-
src, and 2-src. These three types of models have
identical model architecture for inflection and are
different from each other in the input and output.
As the varied baseline results trained per language
family provided by the organizers did not show
consistent improvements compared to training lan-
guages separately, we train all the models per lan-
guage without using external resources. We made
our code publicly available.?

3.1 Baseline (Fairseq) model

The baseline (Fairseq) model (see Figure 1(a))
is very similar to the unaugmented per-language
Transformer baseline (Wu et al., 2020) provided by
the shared task organizers, except that the Fairseq
implementation is used and that beam search rather
than greedy search is used at decoding time. The
inputs to this model are the individual characters
of the lemma followed by the individual subtags of
the tgtmsd. For example, for the English training
triple (look, looks, V;SG; 3;PRS),thein-
put to the modelis1 o o k V SG 3 PRSand
the gold standard outputis 1 o o k s. Our sub-
missions for languages with 5,000 or more training
triples are generated with this model. The model
is trained for a maximum of 20,000 optimizer up-
dates for languages with 5,000 to 20,000 training

https://github.com/LINGuistLIU/
principal_parts_for_inflection
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triples, and for a maximum of 30,000 updates for
languages with over 20,000 training triples.

3.2 Principal parts of a paradigm

The classical notion of “principal parts of a
paradigm” is the minimal subset of paradigm slots
that provides enough information according to
which the inflection forms for other slots in the
same paradigm can be correctly generated (Finkel
and Stump, 2007). The principal part may be dif-
ferent for different slots in the same paradigm, and
more than one principal part may be necessary in
order to inflect for some slots correctly. For exam-
ple, for each Tagalog lexeme in Table 1, slots 2
and 3 are very informative source forms for each
other, which are different by the first consonant, or
the presence or absence of um in the prefix. Slot
3 can predict slot 7 very well, and slot 8 can be
easily generated from slot 4. Inflection of slot 6
is the most complex in the paradigms, for which
slot 4 together with the lemma, i.e. slot 1, can
be informative but not sufficient. Therefore, the
lemma is not always a good choice as the source
to generate all other slot forms from, and we can
expect the morphological inflection system to be
more effective and efficient if the principal parts
information is incorporated.

The 1-src model (see Figure 1(b)) and the 2-
src model (see Figure 1(c)) leverage the idea of
paradigm principal parts. To do this, we first recon-
struct the paradigm for each lexeme in the shared
task data, from which we prepare input and output
data for the inflection models.

We assume that each part-of-speech (henceforth
POS) in a language has its own set of morphosyn-
tactic descriptions (henceforth MSDs), which can
be obtained by collecting the tgtmsd types in the
training, development and test data for the lan-



guage. Each slot in the paradigm of a lexeme
locates an inflected word form, which can be con-
sidered a combination of a lexeme and an MSD. In
this paper, slot is used to refer to both the inflected
form and the corresponding MSD it locates, slot
form refers to the inflected forms only, and slot
MSD refers to the corresponding morphosyntactic
description. If a slot contains both the MSD and
the inflected form, it is a filled slot, while an empty
slot needs to be filled with the corresponding in-
flected form. The slot MSD can be determined by
the set of MSDs we collect for each POS, and we
can fill in the slot if it appears in the training data
and mark it if the inflected form is to be generated
in the development or test data, or does not appear
in the shared task data at all. In addition, the shared
task data format has the first element in the triple
as the lemma form, i.e. the canonical, or citation,
form of the lexeme. We add an additional slot in
the paradigm for the lemma form, and tag the slot
as POS; CANONICAL where the POS in the tag
is determined by the POS of the lemma. As a re-
sult, we create a paradigm for each lexeme in the
shared task data and the reconstructed paradigm
for each lexeme has at least one filled slot. Ta-
ble 1 provides 5 example paradigms reconstructed
from the Tagalog data, where — marks slots with
tgtforms to be predicted in the development set, ?
are slots in the test data and * indicates slots which
are not found in the shared task data,? and other
slots which are filled with inflected word forms
are data in the training set. In cases where slots
have alternative forms in the data, only one form is
kept. For example, there are two alternative forms
for thanda V; SG; 1; PRS in the Zulu training
data: ngithanda and ngiyathanda, and our
conversion only kept ngiyathanda.

1-src model In order to train the 1-src model,
the reconstructed paradigm is organized so that
each of the known slots is given as a srcform
from which we predict every other known slot as
the tgtform. The symbol # is inserted between
the srcmsd and tgtmsd. For example, six input-
output tuples (see Figure 2) are constructed from
the Tagalog Lexemel paradigm example provided
in Table 1. When only one slot is filled in the re-
constructed paradigm, we make the slot predict

3The * slots may be invalid in the language. For example,
the English noun cattle does not have a single form, and
the single slot would be marked by * in the paradigm for the
lexeme catt le reconstructed by our method.
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INPUT, i.e. srcform srcmsd # tgtmsd OUTPUT, i.e. tgtform

pahinga VCANONICAL # V PFV AGFOC ]-—-)[ nagpahinga

( pahingaV NFIN#V CANONICAL )-—){ pahinga ]
[nagpahmgaVPF\/AGFOC»\/CANONlCAL]—)( pahinga j
( pahinga VCANONICAL # V NFIN ]—)( pahinga j
(_ nagpahingavprvacroc#vNAN ) -3 ( pahinga j
C )
( )

pahingaVNFIN #V PFV AGFOC ]—-)( nagpahinga

Figure 2: Input-output tuples for the 1-src model for
Tagalog Lexemel (pahinga “rest”) example paradigm

INPUT, i.e. srcformi sremsdi # srcformz srcmsd2 # tgrmsd OUTPUT, i.e. tgtform

)

)
)

(pahingavNF\N::nagpahinga\/PFVAGFochCANON\CAL]—) { pahinga

[pah\ngaVCANONmAL»nagpahingaVPFVAGFOCWNFlN)-«)[

(

pahinga

pahingaVCANONICAL#pahingaV NFIN#V PFV AGFOC )—){ nagpahinga

Figure 3: Input-output tuples for the 2-src model for
Tagalog Lexemel (pahinga “rest”) example paradigm

itself (i.e. input as lemma POS; CANONICAL
# POS; CANONICAL and output as Iemma) for
training. All given srcform-srcmsd slots are used
to predict the tgtform for each tgtmsd in the devel-
opment and test data respectively. Consequently,
for the Tagalog Lexemel example, each tgtsmd in
the development and test sets will be predicted by
three different source forms with the correspond-
ing morphosyntactic description specified, rather
than being predicted only by the lemma. This is
the model we use to generate our submission pre-
dictions for 39 languages with fewer than 5,000
training triples. The languages aka, ben, cly, cre,
kan, kir, kon, liv, 11d, lug, nya, pus, sna, and swa are
trained for 30,000 maximum updates, and other lan-
guages are trained for 20,000 maximum updates.

2-src model The 2-src model generates predic-
tions for the remaining 7 low-resource languages
(czn, frr, gsw, izh, mlt, mwf, zpv), because we
only trained the 2-src model for languages with
fewer than 2,000 training examples due to time con-
straints and because the 2-src model generates sig-
nificantly better predictions for these 7 languages
on the development data than the 1-src model. Dur-
ing training, the inputs to the 2-src model are all
possible known two-slot combinations followed by
the MSD for the slot to be filled; the output is the
known inflected form for the target slot. The sym-
bol # is inserted between the first srcmsd and the
second srcform as well as between the second sr-
cmsd and tgtmsd. For example, three input-output
tuples (see Figure 3) are constructed from the Taga-
log Lexemel example. When only one slot form
is given in the paradigm, the given slot is made



to predict itself by taking as input the Iemma and
POS; CANONICAL repeated twice together with
the tgtmsd as POS; CANONICAL, and the output
is the Z1emma form. When only two slots are filled
in the paradigm, each slot form is treated as the tgt-
form and the other slot is repeated twice together
with the MSD for the slot to be predicted as input
to the model. For the development and test data,
every two-slot combination of given slots is used
as input to predict the tgtform corresponding to
the tgtmsd. Therefore, each test and development
tgtmsd in the Tagalog Lexemel example will be
predicted by three different inputs, respectively.

Prediction selection Because of the input and
output construction for the 1-src and 2-src models,
each tgtmsd may be predicted multiple times by
different inputs which may generate more than one
inflected form for the same tgtmsd. Two mech-
anisms are employed to pick the best prediction,
both of which implicitly employ the principal parts
intuition. The first mechanism is to select the pre-
diction generated by most inputs, i.e. by majority
vote for predictions by different inputs. The sec-
ond mechanism is to select the prediction which
gets the highest average log-likelihood, i.e. by av-
eraging the scores for each prediction by different
inputs. The intuition behind this mechanism is
that the most informative source slots should be
most confident about the inflection for the target
slot. Unless the majority vote mechanism produces
significantly higher accuracy on the development
data for the language, the prediction with the high-
est average log-likelihood is selected as the final
prediction for the target slot.

4 Experiments

Considering the time constraints and the al-
ready strong performance of the baseline models—
especially when training data is abundant—we fo-
cused our experiments on the 24 low-resource de-
velopment languages in the development phase, for
which we attempted to augment the Transformer
model for inflection by reorganizing the data into
paradigms and making use of the principal parts
morphology idea in different ways.

In addition to the 1-src and 2-src models de-
scribed in section 3.2, other approaches we experi-
mented with included 2-random-src, 3-random-src
and 4-random-src models where we randomly pick
two, three or four given slots as input which will
be translated to the tgtform corresponding to the
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tgtmsd, as well as all-src-tgtform and all-src-all-
form models, where the concatenation of all given
slots followed by the tgtmsd are input to the inflec-
tion model which predicts the corresponding tgt-
form or all srcforms and the tgtform. Though these
models produced better performance for one or two
languages that we experimented with initially, we
did not see consistent performance improvement
proportional to the increasing model complexity
over the 1-src and 2-src models. We also exper-
imented with warming up the 1-src model with
an additional copying task following the practice
suggested by Anastasopoulos and Neubig (2019),
but did not see improvements. Therefore, we fo-
cused exclusively on the 1-src and 2-src models
after initial experiments.

Further experiments with the 1-src model were
conducted on the 24 development languages with
fewer than 5,000 training triples, and further ex-
periments with the 2-src model were conducted on
the 17 development languages, each of which has
fewer than 2,000 training triples. The performance
of the two selected models will be presented and
discussed in the next section.

5 Results and discussion

The average inflection accuracy of development
data for the 24 languages by the 1-src model is
91.72%, which is 1.3% higher than the unaug-
mented per-language Transformer baseline and
0.55% higher than the best performance of all base-
line models. The 1-src model achieved higher or
equal accuracy on 18 languages compared to the
unaugmented per-language Transformer baseline
and 17 languages compared to the best performance
of all baselines. The 2-src models for the 17 lan-
guages we experimented with achieve an average
accuracy of 91.63% and their performance on 7 lan-
guages (czn, frr, gsw, izh, mlt, mwf, zpv) is better
than the 1-src model.

Figure 4 plots the difference in the accuracy on
the development set for each language by the 1-src
for 2-src model from that by the unaugmented per-
language Transformer baseline. Figures 4(a) and
4(c) depict the relationship between this difference
and the number of training triples. Figures 4(b)
and 4(d) show the relationship between this differ-
ence and the completeness of the paradigms seen
in training. The filled percentage of each paradigm
is calculated by dividing the number of given slots
by the number of all slots in the paradigm, and the
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paradigm completion rate of a language is calcu-
lated by taking the average of the filled percent-
ages of all the reconstructed paradigms. For in-
stance, the completion rate of the Tagalog Lex-
emel paradigm is 37.5%, and the average comple-
tion rate of all the Tagalog example paradigms in
Table 1 is 85%. The low-resource development
languages have average completion rates between
54.16% (frr) and 79.81% (mao). Figure 5 plots the
same relationships, but the difference is between
the 1-src or 2-src model and the best performance
of all baseline models. Languages for which both
the baseline models and our models achieve 100%
accuracy are excluded from the plots, because such
languages have the potential to skew the perfor-
mance comparison. Such languages include one
Austronesian language: mlg and six Niger-Congo
langauges: gaa, kon, lin, nya, sot and swa.

Model performance and training data size
The improvements by the 1-src and 2-src models
over the unaugmented Transformer baseline trained
per language show the same tendency with relation-
ship to the training data size: The more training
data there is available, the less advantage our mod-
els have. This is shown in Figure 4(a). The baseline
model begins to catch up with these improvements
as is shown in Figure 5(a), where the 1-src model
accuracy still has a decreasing trend as the train-
ing data increases while the 2-src model accuracies
turn into a slightly increasing trend.

Model performance and paradigm completion
rate The good performance of our models relies
on the high completion rate of paradigms. The
performance for both the 1-src and 2-src models
tends to be better if the reconstructed paradigm con-
tains a higher proportion of known slots. This is
true whether our models are compared to the single
unaugmented per-language Transformer baseline
model or to the ensemble of all baseline models.
This relationship is illustrated in Figure 4(b) and
Figure 5(b). An extreme case of a low paradigm
completion rate in the shared task languages is
Ludic, where only 5.64% of the slots are known,
and our best model for this language is the 1-src
approach with average score selection, which gen-
erates an accuracy of 48.78% on the development
data. This relationship supports the use of principal
parts for morphological inflection, because given a
random sampling, the more complete a paradigm
is, the more likely it is that the principal parts are
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included in the paradigm.

Model performance and genealogy Subplots
(c) and (d) in Figure 4, and subplots (c) and (d) in
Figure 5, show the performance of the 1-src model
on languages with language family information.
Uralic languages are challenging to our models.
This is to be expected from the fact that Uralic lan-
guages usually have large inflection paradigms and
therefore tend to have more incomplete slots on
average given the same amount of data, and may
hence be missing a principal part.

6 Related work

Morphological inflection is one of the natural lan-
guage processing tasks which achieve great im-
provement by applying neural network models, es-
pecially sequence to sequence models, which ini-
tially outperformed other approaches by a large
margin on high-resource languages (Cotterell et al.,
2016; Kann and Schiitze, 2016; Aharoni et al.,
2016) and have been improved and augmented
later to achieve state-of-the-art performance on
low-resource languages as well (Aharoni and Gold-
berg, 2017; Cotterell et al., 2017a; Makarov and
Clematide, 2018; Wu et al., 2018; Cotterell et al.,
2018; Wu and Cotterell, 2019; McCarthy et al.,
2019; Anastasopoulos and Neubig, 2019).

Subtask 2 of the CONLL-SIGMORPHON 2017
shared task (Cotterell et al., 2017a) was about
paradigm cell filling, and received submissions of
neural network systems (Kann and Schiitze, 2017;
Silfverberg et al., 2017). There is also other work
which targets the paradigm cell filling problem
(Cotterell et al., 2017b; Silfverberg et al., 2018; Sil-
fverberg and Hulden, 2018). Cotterell et al. (2017b)
models the principal parts idea with graphical mod-
els to generate all the missing slots in paradigms.
Our 1-src model has an input-output format simi-
lar to Silfverberg and Hulden (2018). Our work is
also closely related to Kann et al. (2017) on multi-
source inflection which is also motivated by a prin-
cipal parts analysis. Cotterell et al. (2019) use an
explicit neural model that organizes paradigm slots
in their most predictable order to investigate mea-
sures of morphological complexity, an instantiation
of the principal parts idea in another context.

7 Conclusion

We have presented the system for our submission
to the SIGMORPHON 2020 shared task O on mor-



phological inflection. It achieved the highest aver-
age accuracy and smallest average Levenshtein dis-
tance across all the 90 languages from 18 language
families. The standard deviation of our submission
is the lowest for accuracy and the second lowest
(0.004 higher than the lowest) for edit distance.

Our work indicates that the self-attention Trans-
former architecture can perform well for the mor-
phological inflection task for a genealogically and
typologically diverse group of languages. The ar-
chitecture has a strong generalization ability and
can inflect new languages as effectively as the lan-
guages it is tuned on. We augment the Transformer
model by converting the morphological inflection
task to the paradigm cell filling problem and lever-
aging the principal parts of paradigms in indirect
ways, which turns out to be helpful, especially
when the training data is limited and the recon-
structed paradigms have a high completion rate.
Our primary strategy to incorporate principal parts
information in this work is to use each given slot
in the reconstructed paradigm to predict the target
form and select the final prediction from predic-
tions generated by different slots by highest aver-
age score or majority vote. Another strategy is to
use all possible two-slot combinations to predict
the target form.

According to principal parts morphology, the
number of principal parts may vary between
paradigms and languages, and different slots may
require different numbers of principal parts to in-
flect correctly, indicating that uniformly using ev-
ery slot individually or every two-slot combination
may not always be the best choice. Future work is
needed to explore how to use principal parts infor-
mation more effectively, perhaps tuning the number
and choice of forms on a per-language basis or de-
veloping strategies to explicitly determine principal
parts for the paradigms.
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Abstract

Sequence-to-sequence models have proven to
be highly successful in learning morphological
inflection from examples as the series of SIG-
MORPHON/CoNLL shared tasks have shown.
It is usually assumed, however, that a linguist
working with inflectional examples could in
principle develop a gold standard-level mor-
phological analyzer and generator that would
surpass a trained neural network model in ac-
curacy of predictions, but that it may require
significant amounts of human labor. In this pa-
per, we discuss an experiment where a group
of people with some linguistic training de-
velop 25+ grammars as part of the shared task
and weigh the cost/benefit ratio of develop-
ing grammars by hand. We also present tools
that can help linguists triage difficult complex
morphophonological phenomena within a lan-
guage and hypothesize inflectional class mem-
bership. We conclude that a significant devel-
opment effort by trained linguists to analyze
and model morphophonological patterns are
required in order to surpass the accuracy of
neural models.

1 Introduction

Hand-written grammars for modeling derivational
and inflectional morphology have long been seen
as the gold standard for incorporating a word in-
flection aware component into NLP systems. How-
ever, the recent successes of sequence-to-sequence
(seq2seq) models in learning morphological pat-
terns, as seen in multiple shared tasks that ad-
dress the topic (Cotterell et al., 2016, 2017, 2018;
McCarthy et al., 2019), have raised the question
whether there is any advantage in developing hand-
written grammars for performance reasons. This
question has special relevance with regard to low-
resource languages when there is a desire to quickly
develop fundamental NLP resources such as a mor-
phological analyzer and generator with minimal
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bus;N;PL sheep;N;PL blarg;N;PL
v v v
Lexicon (lexc) Guesser
v v v
bus+s sheep blarg+s
Morphophonological FST cascade

! v
buses sheep

!
blargs

Figure 1: Basic FST grammar design used in this
project which combines a lexicon-based model with a
guesser to handle unseen lemmas.

resource expenditure (Maxwell and Hughes, 2006).

It is clear that there is a need for hand-written
morphological grammars, even if neural network
models approach the performance of carefully
hand-crafted morphologies. Normative and pre-
scriptive language models, such as those needed
by language academies in many countries—e.g.
RAE in Spain, Académie Frangaise in France, or
the Council of the Cherokee Nation in the U.S.—
would need to rely on explicitly designed models
for providing guidance in word inflection, spelling
rules, and orthography if they were to be imple-
mented computationally. Currently, neural models
trained on examples provide no verifiable guaran-
tees that certain prescriptive phenomena have been
learned by a trained model and can be reliably used.

In this paper' we document an experiment where
a number of morphological grammars were hand-
written by a group of 19 students enrolled in the
class “LING 7565—Computational Phonology &
Morphology” at the University of Colorado, each

'All tools and grammars developed are available on
https://github.com/mhulden/7565t00ls.
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Figure 2: Old-school pencil-and-paper Linguistics: hy-
pothesizing the possible inflectional patterns for Taga-
log Actor Focus and Object Focus verb forms (from
project notes). The symbol R represents reduplication
of the first CV(V) in the stem.

student having training in either computer sci-
ence or linguistics, and some previous training in
writing finite-state morphological grammars. The
languages were chosen from the 2020 SIGMOR-
PHON shared task 0 (Vylomova et al., 2020), and
the grammars were designed so as to be able to
inflect unseen forms. The design was also such that
the grammars were able to function as “guessers”
and inflect lexemes never seen in the training data.

2 Finite-State Grammars

Finite-state Transducer (FST) solutions have long
been the foremost paradigm in which to develop
linguistically informed large-scale morphological
grammars (Koskenniemi, 1983; Beesley and Kart-
tunen, 2003; Hulden, 2009). The availability of a
variety of tools (Hulden (2009); Riley et al. (2009);
Beesley (2012) inter alia) has also supported this
mode of development, and by now hundreds of lan-

163

guages have grammars developed by linguists in
this paradigm.

The usual approach to developing morphological
analyzers is to model the mapping from a lemma
(citation form) and a morphosyntactic description
(MSD) into an inflected form (target form) as a two-
step process. The first step maps the lemma+MSD
into an intermediate form that represents a combina-
tion of canonical morpheme representations, while
the second step employs a cascade of transducers
which handle morphophonological alternations. It
is customary to handle inflectional classes by ex-
plicitly dividing lemmas into groups in the first
step so that correct morphemes are chosen for each
lemma. Analyzers built in such a way generally are
not capable of inflecting lemmas that are not explic-
itly encoded in a lexicon. However, it is common
to integrate an additional “guesser” component that
can handle any valid lemma in a language, and pass
it through the relevant morphophonological com-
ponent only (Beesley and Karttunen, 2003). Basic
finite-state calculus is then used to construct a sin-
gle FST that “overrides” outputs from the guesser
whenever a known lexeme is inflected, so conflict-
ing outputs are avoided. The basic design is illus-
trated in Figure 1.

3 Approach

All of the grammars were built with the foma finite-
state tool (Hulden, 2009). Before grammar writing
commenced, the participants were urged to spend
roughly 1 hour in groups of 3 to quickly analyze
all the languages in the development and surprise
groups as follows:

e Triage: the training sets for all languages
in the shared task were rapidly analyzed for
difficulty, and possible complex inflectional
classes. Following this, a selection of lan-
guages were chosen by the participants to
model. This was done once for the devel-
opment languages, and through an additional
round of triage for the surprise languages.

Each language was scored for difficulty
based on familiarity with the writing system,
paradigm size, complexity, and the apparent
number of inflectional classes; naturally the
actual number was not known, and this repre-
sented an educated guess. Participants were
asked to informally rate the difficulty of a lan-
guage on a l(easy)-5(very difficult) before



choosing languages to work on. The partici-
pants were not explicitly instructed to pick an
easy language, but rather, to choose one that
would provide an interesting experience and
would be feasible to complete.?

Computational tools (discussed below) were
used to reconstruct the partial paradigms given
in the training data, to extract the alphabets
used in the languages, to canonicalize the Uni-
Morph tag order (Kirov et al., 2018) used in
the data, and to provide a rapid development
environment that could give instant feedback
on accuracy on the training and dev sets after
compilation of FSTs.

A template grammar was used as a starting
point; it provided both the possibility of de-
veloping a morphophonology-only grammar,
or a grammar where all lemmas needed to be
divided into inflectional classes.

Through the above process, a number of lan-
guages were selected as the primary targets, and
development was launched for some 40 languages
in total—roughly 20 for the development languages
and a similar number for the surprise languages, as
they were published. In the end, the output of 25
languages was submitted to the shared task. The
criterion for actually submitting a language was
that the grammar was mature enough, judged by
examining whether accuracy on the development
set was within 5% of the neural baseline models
(Wu et al., 2020) provided by the organizers.

4 Tools

As mentioned above, a number of tools for the sup-
port of rapid grammar writing were also developed.
These included the tools to reconstruct the partial
inflection tables from the data and various analysis
tools for accuracy and error reporting.

Apart from that, a separate tool for inflection
table clustering and a non-neural tool for hypoth-
esizing forms for missing slots in paradigms were
also developed. This latter tools’ output was also
submitted as a second system (CU-7565-02) to the
shared task for nearly all languages. These two
tools were more involved and are discussed in de-
tail below.

2On average, the surprise languages were deemed consid-
erably more difficult, largely because of paradigm size.
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4.1 Inflection Table Clustering

Crucial in the development of a grammar from raw,
partial inflection table data is the ability to hypothe-
size if lexemes fall into different inflectional classes
quickly, and if so, how. This is non-trivial to de-
termine, especially with large amounts of lexemes
represented in the various data sets. It is also es-
sential to disentangle phonological regularity from
inflectional classes which may be significant red
herrings in the analysis of a language. For example,
while cat in English pluralizes as cats, bus plural-
izes as buses—by an epenthetic e inserted between
sibilants. A naive analysis would postulate that
the two lexemes behave differently and place them
in separate inflectional classes, although a prop-
erly designed phonological component could avoid
this unnecessary complexity in the morphological
component.

4.1.1 Lexeme similarity measure

To facilitate providing a linguist with a quick
overview, we developed a model to perform rapid
hierarchical clustering of all lexemes in a lan-
guage’s data set. To this end, we developed a metric
for lexeme similarity with respect to inflectional
behavior. This metric is calculated by a two-step
process. First, all pairs of word forms for a lexeme
(within a paradigm) are aligned using an out-of-
the-box Monte Carlo aligner (Cotterell et al., 2016)
written by the last author. This is shown in figure
3 (a). Following this alignment procedure, we au-
tomatically produce a crude approximation of the
string transformation implied by the alignment as
a regular expression, which is then compiled into
an FST.

In the conversion process, matching input se-
quences in the alignment are modeled by 2+ (re-
peat one or more symbols®) and non-matching sym-
bols are replaced by the symbol-pair found in the
alignment: i:0. For example, the aligned pair runs
> ran in Figure 3 (b) is converted into the regular
expression

7+ ?+

0 ()

which can be compiled into a transducer in Figure
3 (c). This transducer generalizes over the matched
elements in the input-output pair and can be ap-
plied to other third-person present forms, such as
outruns to produce outran. Obviously, this exam-
ple transformation only applies to this particular

u:a S

3We use foma regular expression notation.



inflectional class and will give incorrect transfor-
mations such as pulls — pall for words that do not
have the same inflectional behavior. The purpose
of calculating all-known-pairs mappings for each
lexeme is to provide a similarity measure between
lexemes. In particular, we use the following mea-
sure for two lexemes [ and [2, which compares the
overlap of all transformation rules found between
the forms in [; with the transformation rules in [5:

sim(ly, Io) = 2 x #shared(ly, l2)
D207 dshared(ly, 1) + #shared (2, I2)
(2

Here, #shared(l1, l2) is the simple count reflect-
ing how many of the slot-to-slot transformation
rules in [; are identical for 5.

We subsequently convert this similarity score
into a distance for the purposes of clustering:

distance(l,l2) = 1 — sim(ly, l2) 3)

Note that the denominator in the similarity cal-
culation in effect expresses the maximum possible
similarity scores for /1 and [5 by calculating the sim-
ilarity with themselves, resulting in a range of [0, 1]
for the overall similarity and distance measures.
Since many given paradigms contain missing forms
and are therefore missing pair-transformations as
well, this maximum score will vary from lexeme to
lexeme.

With this similarity in hand between all lexemes,
we can perform a (single-link) agglomerative hi-
erarchical clustering of all lexemes in the training
data of a language.

Example results of the clustering are shown in
Figure 4 for Ingrian (the full training set which con-
tained partial inflectional tables for 50 lexemes),
and English (a small subset). Included in the In-
grian clustering are our final linguist-hypothesized
inflectional class numbers for each lexeme for com-
parison.

4.2 Inflection with transformation FSTs

As a byproduct of the clustering distance measure
that uses slot-to-slot transformation FSTs, we can
also address the shared task itself. Since the de-
velopment and test sets largely contain unknown
inflections from lexemes where some forms have
been seen, we can make use of the learned trans-
formation rules from other lexemes that target an
unknown form asked for in the development or
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(@)

run run®@@O0® run®
ran running runs
running running runs
runs@OO® ran@OOO ran0®
(b)
run
2+ 0:{ning} " : 2+ 0:s
» : ‘A
running---- + {rine}:s - > FUNS
?+ u:a ?+ {m’ng}:O..' A u.:a 2+ .:r?:r"u-:-a"?-;-s-:-(;i
‘4 v " """""""
ran

Figure 3: Generating transformation rules for each pair-
wise slot for a lexeme: (a) we perform alignment of all
pairs, (b) a regular expression is issued to model the
transformation which is compiled into an FST (c).

test sets. To this end, we collect all known source
— target transformation rules from all other tables
where the target form is the desired slot (MSD). We
then apply all of these transformations, generating
potentially hundreds of inflection candidates for
the missing target slot of a lexeme. From among
the candidates, we perform a majority vote. For
all languages, we experimented with weighting
the majority vote so that transformation rules that
come from paradigms that share many transforma-
tion rules with the target lexeme’s paradigm get a
multiplier for the vote using the similarity measure
in (2). This strategy produced slightly superior re-
sults throughout, as analyzed by performance on
the development set, and was hence used in the
final submission for our system CU-7565-02.

5 Results

The results for the hand-written grammars (CU-
7565-01) and the non-neural paradigm completion
model (CU-7565-02) are given in Table 1. We note
that we were able to match or surpass the strongest
neural participant in the task on 13 languages with
the hand-written grammars. Several of these, how-
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Figure 4: Hierarchical clustering of lexemes by apparent inflectional behavior based on string transformations
between inflectional slots for Ingrian (left) and English (right). The numbers in parentheses in Ingrian refer to the
Linguist-derived inflectional class number after developing a grammar. The Ingrian data is the output from the full
training data while the English is a small selection of verbs to illustrate clustering behavior.

ever, were relatively “easy” languages and often
did not contain any significant morphophonology
at all. On two languages, Ingrian (izh) and Taga-
log (tgl), we were able to significantly improve
upon the other models participating in the task.
These languages had a fairly large number of in-
flectional classes and very complex morphophonol-
ogy. Ingrian features a large variety of consonant
gradation patterns common in Uralic languages,
and Tagalog features intricate reduplication pat-
terns (see Figure 2).

We include results for train, dev, and test as we
used tools to continuously evaluate our progress
during development on the training set. It is worth
noting that the linguist-driven development process
does not seem to be prone to overfitting—accuracy
for several languages on the test set was actually
higher than on the training set.

The non-neural paradigm completion model
(CU-7565-02), which was submitted for nearly
all 90 languages performed reasonably well, and
is to our knowledge the best-performing non-
neural model available for morphological inflection.
Never outperforming the strongest neural models;
it nevertheless represents a strong improvement
over the baseline non-neural model provided by the
organizers. Additionally, it provides another tool
to quickly see reasonable hypotheses for missing
forms in inflection tables.

6 Discussion

6.1 Earlier work

To our knowledge, no extensive comparison be-
tween well-designed manual grammars and neural
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Language trn' dev' | tst'  tst?
aka 100.0 100.0 | 100.0 89.8
ceb 852 86.2 | 86.5 84.7
crh 97.5 97.0 | 964 97.7
czn 79.0 76.0 | 725 76.1
dje 100.0 100.0 | 100.0 100.0
gaa 100.0 100.0 | 100.0 100.0
izh 934 91.1 929 772
kon 100.0 100.0 | 98.7 974
lin 100.0 100.0 | 100.0 100.0
mao 85.5 85.7 | 66.7 57.1
mlg 100.0 100.0 | 100.0 -

nya 100.0 100.0 | 100.0 100.0
ood 81.0 875 71.0 624
orm 99.6 100.0 | 99.0 93.6
ote 91.2 935 1909 913
san 88.5 89.7 89.0 88.3
sna 100.0 100.0 | 100.0 99.3
sot 100.0 100.0 | 100.0 99.0
swa 100.0 100.0 | 100.0 100.0
syc 89.3 873 | 883 89.1
tgk 100.0 100.0 | 93.8 93.8
tgl 779 750 | 7718 -

xty 81.1 80.0 | 81.7 70.3
Zpv 84.3 7719 | 789 8l1.1
zul 82.9 88.1 83.3 88.5

Table 1: Results for the train, dev, and test sets with our
handwritten grammars (*) and our non-neural learner
(?). The non-neural model also participated in addi-
tional languages not shown here. Languages with ac-
curacies on par with or exceeding the best shared task
participants are shown in boldface.



network models for morphology have been pro-
posed. Pirinen (2019) reports on a small exper-
iment that compares an earlier SIGMORPHON
shared task winner’s results to a Finnish hand-
written morphological analyzer (Pirinen, 2015),
with the seq2seq-based participant’s model yield-
ing higher precision than the rule-based FST ana-
lyzer. In another related experiment, Moeller et al.
(2018) train neural seq2seq models from an exist-
ing hand-designed transducer acting as an oracle
and note that the seq2seq model begins to converge
to the FST with around 30,000 examples in a very
complex language, Arapaho (arp).

The non-neural inflection model (CU-7565-02)
builds upon paradigm generalization work by Fors-
berg and Hulden (2016), which in turn is an
extension of Hulden et al. (2014) and Ahlberg
et al. (2015). An earlier non-neural model for
paradigm generalization is found in Dreyer and
Eisner (2011).

6.2 Human Resources

We did not record the exact amounts of time spent
on the project individually for each participant.
However, we can estimate this based on previous
years’ class surveys in the same course (LING
7565—Computational Phonology and Morphol-
ogy) as regards the number of hours per week stu-
dents spend working on course projects. Each stu-
dent on average in the course spends 6.6 hours per
week; as the project ran for 5 weeks with 19 partic-
ipants, we roughly estimate a total of 627 person-
hours spent on the task of developing grammars.
As reflected in the results, we considered 13-15
languages to have largely completed grammars, or
very nearly completed. The remainder of the 25
languages submitted were known to require further
work, but very little work to reach accuracies be-
yond or at the best-performing neural models for
the task. These estimates do not include student
training in morphology, finite-state machines, and
grammar writing. Likewise, some languages with
very large number of forms per lexeme—such as
Erzya (myv) with 1,597 forms and Meadow Mari
(mhr) with 1,597 forms—were deemed outside the
realm of realistic analysis and linguist-driven gram-
mar writing within a scope of 5 weeks that were
allotted to the work.

6.3 Neural or Human?

Given the above estimates, we can provide a conser-
vative estimate of at least 40 person-hours of work

on average—not counting infrastructure develop-
ment and strategizing—to develop a hand-written
morphological analyzer and generator that is on
par with a model learned by state-of-the-art neural
approaches. There is large variance around this
figure, however, as some very regular languages
only required 30 minutes of work and a dozen-or-
so lines of code to produce a model that captures all
the morphology and morphophonology involved.
Others required a much greater and more intense
effort in analyzing the partial inflection tables given
in the training data, classifying lemmas into inflec-
tional classes and modeling morphophonological
rules as FSTs. Additionally, we note that all the
participants had already been trained in this kind
of analysis and grammar writing, a factor that our
estimate does not take into account.

6.4 Language Notes

In the course of the development of the grammars,
we observed that many languages had a skewed
selection of data, or inconsistencies that would not
be fruitful to model in a hand-written grammar.
This also meant that in such cases it was unlikely
that the hand-written grammar would ever attain the
performance of a neural model, which can better
handle the inconsistencies described below. We
hope to be able to clean up the data as the test data
is released to re-evaluate our grammars for these
languages, without this additional noise.

Maori (mao) is an example of a language where
the given data set provides a hard ceiling on how
much can be inferred either by a linguist or a
machine learning model. The data provided con-
tains only maximally two forms for each verb—
the active and the passive. Some examples of
active-passive alternations include: neke ~ neke-
hia, nehu ~ nehua, kati ~ katia. In this data
set, the passive form is utterly unpredictable from
the active form (but not vice versa). The standard
phonological analysis of the data (Kiparsky, 1982;
Harlow, 2007)—familiar to many from phonology
textbooks—is that the underlying stem contains
a consonant which is removed by a phonological
rule that deletes word-final consonants in the lan-
guage. The traditional phonological analysis is that
the lemma listed as neke, for example, is underly-
ingly /nekeh/, and the passive suffix is regularly
-ia, while the active suffix is the zero morpheme
-0. The consonant-deletion rule applies to the ac-
tive form, which surfaces as neke, but not to the
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MacGyver abominate render
<::MacGyver1ngé;%abominating<::render1ng V.PTCP;PRS
? abominated rendered V.PTCP;PST
< - @ - @ - ViNFIN
MacGyvers abominates renders V;SG; 3;PRS
Candidates for ?: [MacGyvered, MacGyverd, MacGyvered, MacGyvered]

Figure 5: Generating candidate inflections for V.PTCP .PST for the verb “to MacGyver”. We use all the can-
didates generated by known transformation rules from all other tables (only 2 other tables shown here). A list of
candidate inflections is produced, where the final inflection is decided by majority vote.

passive form nekehia, where the added suffix pre-
vents the consonant from deleting. There is also an
additional hiatus-avoiding rule—deleting a vowel—
seen in e.g. /nehu/+/ia/ — nehua. Obviously, the
consonant which is not seen in the active form
given in the training data can not be used to pre-
dict the passive form. The best one can do is to
guess the most likely consonant in the language as
being present in the underlying stem. Had the train-
ing data contained a third form which maintains
the consonant—e.g. the Maori gerundive suffix
/-ayga/—the missing consonant of the passive could
be predicted from the gerundive and vice versa.*

Hiligaynon (hil) contained several lemmas listed
with multiple alternate forms, such as:

bati/batian/pamatian ginpamantian V;PROG;PST

It is very challenging to account for the occasional
lemma being listed in two or three parts in a stan-
dard FST design, and so this kind of transformation
was not attempted.

Syriac, Sanskrit, Oromo, Tohono O’odham
(syc,san,orm,oo0d) contained multiple lines where
the lemma and MSD were identical, but the out-
put was not. In some languages this was pervasive
enough to cause us to exclude them (ctp,pei) from
our selection of attempted languages.

Chichicapan Zapotec (zpv) contained several
inflected forms where the target form actually
contained two alternatives separated by a slash.
Predicting and modeling when this happens was
deemed to be irregular and was not attempted.

4“If we wanted an A on our [phonology] exam, we would
of course say the underlying forms are [the ones with the
consonant] ...If someone were to say that the underlying
forms are [consonantless] he’d flunk.” (Kiparsky, 1982)
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Zenzontepec Chatino (czn) contained a mixture
of hyphens (-) and en-dashes (-) where presumably
only one of them should have been used. Again,
this was deemed hard to predict manually and no
obvious pattern was found.

7 Conclusion

We have done a preliminary investigation in pit-
ting neural inflection models against more tradi-
tional hand-written grammars, designed by non-
naive grammar developers with some training in
the field of linguistics and computational modeling.
The results point to two main directions.

First, it is very difficult in many cases to outper-
form a state-of-the-art neural network model with-
out significant development effort and attention
to nuanced morphophonological patterns. Indeed,
some data sets in the task were very simple, and
in such cases, it is quite trivial to develop a high-
accuracy grammar. This advantage is somewhat
nullified by the apparent ability of neural seq2seq
models to also model such morphologies with high
accuracy, despite little data.

The second observation is the following: for lan-
guages where the group was able to significantly
outperform neural models (such as Tagalog and In-
grian), success did not come cheaply. We estimate
that for any language with high morphophonologi-
cal complexity and a variety of inflectional classes,
possibly hundreds of hours of development effort
is required even by a trained linguist to surpass the
performance of a current state-of-the-art seq2seq
model. But it is also precisely in this latter case
of high-complexity languages where linguists can
still prevail with a margin.
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Abstract

This paper describes the submission by the
team from the Institute of Computational
Linguistics, Zurich University, to the Mul-
tilingual Grapheme-to-Phoneme Conversion
(G2P) Task of the SIGMORPHON 2020 chal-
lenge. The submission adapts our system from
the 2018 edition of the SIGMORPHON shared
task. Our system is a neural transducer that op-
erates over explicit edit actions and is trained
with imitation learning. It is well-suited for
morphological string transduction partly be-
cause it exploits the fact that the input and out-
put character alphabets overlap. The challenge
posed by G2P has been to adapt the model and
the training procedure to work with disjoint al-
phabets. We adapt the model to use substitu-
tion edits and train it with a weighted finite-
state transducer acting as the expert policy. An
ensemble of such models produces competi-
tive results on G2P. Our submission ranks sec-
ond out of 23 submissions by a total of nine
teams.

1 Introduction

G2P requires mapping a sequence of characters
in some language into a sequence of International
Phonetic Alphabet (IPA) symbols, which represent
the pronunciation of this input character sequence
in some abstract way (not necessarily phonemic,
despite the name of the task) (Figure 1).

Multilingual G2P is Task I of this year’s SIG-
MORPHON challenge. It features fifteen languages
from various phylogenetic families and written in
different scripts. We refer the reader to Gorman
et al. (2020) for an overview of the language data.
Each language comes with 3,600 training and 450
development set examples. It is permitted to use
external resources as well as to build a single mul-
tilingual model.

We participate in this shared task with an adapta-
tion of our SIGMORPHON 2018 system (Makarov

171

fathaigh +—  [fai/ (“giants”)
Irish of Cois Fhairrge (de Bhaldraithe, 1953)

Figure 1: Example of G2P.

and Clematide, 2018b), which was particularly suc-
cessful in type-level morphological inflection gen-
eration. Our system is a neural transducer that oper-
ates over explicit edit actions and is trained with im-
itation learning (Daumé III et al., 2009; Ross et al.,
2011; Chang et al., 2015, IL). It has a number of
useful inductive biases, one of which is the familiar
bias towards copying the input (implemented as the
traditional copy edit). This is particularly useful for
morphological string transduction problems, which
typically involve small and local edits and where
most of the input is preserved in the output. This
contrasts with models that rely purely on gener-
ating characters such as generic encoder-decoder
models, which as a result suffer, particularly on
smaller-sized datasets.

Copying requires that the input and output char-
acter alphabets overlap, preferably substantially.
This also allows our IL training to leverage a
simple-to-implement expert policy (which during
training provides demonstrations to the learner of
how to optimally solve the task). The optimal com-
pletion of the target given the prediction gener-
ated so far during training requires finding edits
that would extend the prediction so that the Lev-
enshtein distance (Levenshtein, 1966) between the
target and the partial prediction + the future suffix
is minimized. Unfortunately, this objective alone
would not discriminate between multiple edit ac-
tion sequences that relate the input and the partial
prediction + the future suffix. To address this spuri-
ous ambiguity, our IL training adds edit sequence
scores, computed using traditional costs,! into the

'Copy costs zero, all other edits cost one.
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objective. This naturally encourages the system to
copy, however this would fail on any editing prob-
lem with disjoint alphabets.

G2P poses an interesting challenge for a sys-
tem like ours. On the one hand, G2P shares many
similarities with morphological string transduction:
The changes are mostly local, it would suffice to
perform traditional left-to-right transduction, and
a substantial part of the work is arguably applying
equivalence rules (e.g. the German letter “g” most
often converts to /g/, “a” to /a/ or /ai/), which is
similar to copying. Yet, a general solution to G2P
cannot rely on overlapping alphabets since many
scripts do not share many symbols, if any at all,
with IPA (e.g. Korean or Georgian).

Our solution adapts the model to use substitu-
tion edits and trains it with a weighted finite-state
transducer acting as the expert policy.

2 Model description

The underlying model is a neural transducer in-
troduced in Aharoni and Goldberg (2017). It de-
fines a conditional distribution over traditional edits
po(y.a | x) = [17, po(a; | acj,x), where x is
an input sequence of graphemes and a = aj . .. qjq
is an edit action sequence. (The output sequence
of IPA symbols y is deterministically computed
from x and a.) The model is equipped with a long
short-term memory (LSTM) decoder and a bidi-
rectional LSTM encoder (Graves and Schmidhu-
ber, 2005). The challenge is training this model:
Due to the recurrent decoder, it cannot be trained
with exact marginal likelihood unlike the more
familiar weighted finite-state transducer (Mohri,
2004; Eisner, 2002, WFST) or its neuralizations
(Yu et al., 2016). For a more detailed description
of the model, we refer the reader to Makarov and
Clematide (2018a).2

IL training Makarov and Clematide (2018a) pro-
pose training the model using IL, a general model
fitting framework for sequential problems over
exponentially sized output spaces. IL has been
applied successfully to natural language process-
ing (NLP) problems, e.g. transition-based parsing
(Goldberg and Nivre, 2012) and language genera-
tion (Welleck et al., 2019). IL relies on the availabil-
ity of demonstrations of how the task can optimally

>The model uses shared input character / action embed-
dings of size 100 and one-layer LSTMs with hidden-state size
200.
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¥ : e/ p(DEL(X)) €:Q / p(INS(£2))
" p
)

¥ :Q /p(suB(%, Q)

Figure 2: Stochastic edit distance (Ristad and Yianilos,
1998): A memoryless probabilistic FST. ¥ and €2 stand
for any input and output symbol, respectively.

be solved given any configuration. Due to the na-
ture of many NLP problems, such demonstrations
can often be provided by a rule-based program
(known as expert policy).

Makarov and Clematide (2018a) use a combina-
tion of Levenshtein distance and edit sequence cost
as the task objective (3 ED(y,y) + ED(X,y), 5 >
1) and devise an expert policy for it. Given a tar-
get sequence y, a partially completed prediction
V1., and the remaining input sequence xg.;, the
expert needs to (1) identify the set of target suffixes
¥j:m that when appended to ¥1.,, lead to a predic-
tion with minimum Levenshtein distance from the
target, and (2) check which of the edit sequences
producing those suffixes have the lowest cost, i.e.
minimum Levenshtein distance from the remaining
input.

The second part is crucial for training accurate
models especially in the limited resource setting,
as it reduces spurious ambiguity arising under the
first part of the objective alone. It is also the sec-
ond part of the training objective that hinges on
the overlap of the input and output alphabets, as
this permits minimization using the edit distance
dynamic program with traditional costs.

2.1 Adaptation to G2P

The adaptation is two-fold: First, we introduce sub-
stitution edits, which have previously not been em-
ployed to keep the total number of edit actions to a
minimum. For each output character c, there is now
a substitution action SUBS|[c] which substitutes ¢
for any input character x.

When the alphabets are disjoint, the complet-
ing edit sequences cannot be very informatively
scored using traditional edit costs. For exam-
ple, for the data sample kur + /klit/ (Rus-
sian: “whale”), we would like the following most
natural edit sequence to attain the lowest cost:
suBs[k], INS['], SUBS[i], SUBS[t]. Yet, it is clear



that under traditional costs, this sequence attains
the same cost as any other that consists of three
substitutions and one insertion. Our solution to this
is to learn costs from the training data to ensure an
intuitive ranking of edit sequences.

SED policy Learning costs as well as computing
string distance can be achieved with a very simple
WEST: Stochastic Edit Distance (Ristad and Yian-
ilos, 1998, SED), which is a probabilistic version
of Levenshtein distance (Fig. 2). We use traditional
multinomial parameterization.

Before starting training the neural transducer,
we train a SED model using the Expectation—
Maximization algorithm (Dempster et al., 1977).
We use the following update in the M-step:
O+ max (0, 0+ «), where 0 is the unnormal-
ized weight computed in the E-stepand 0 < o < 1
is a sparse Dirichlet prior parameter associated with
this edit. This corresponds to sparse regularization
via Dirichlet prior (Johnson et al., 2007), which
results in many edits having zero probability. We
found this training to lead to more accurate SED
models. Furthermore, it dramatically reduces the
size of the edit action set that the neural transducer
is defined over.

SED is integrated into the expert policy. During
training, given a configuration consisting of a par-
tial prediction, a remainder of the input, and the
target, we query the expert policy for next optimal
edits. We minimize the first part of the objective
much like before, and we minimize the second part
by decoding SED with the Viterbi algorithm.

Suppose we transduce the French word x =
abject (“vile”) into the target y = a b 3 ¢ k t. Sup-
pose also that the neural transducer currently at-
tends to character x4 = e and the prediction built
so far during training is ¥1.7 = ab 3e (note the
error). We query the SED policy to get the op-
timal edit action whose likelihood we will max-
imize. First, much like before, we find that the
following edits are optimal with respect to the
first term of the training objective (call them per-
missible) as they do not increase the Levenshtein
distance of the prediction from the target (as-
suming all subsequent edits are permissible too):
SUBS|e|, INS[¢], DEL, SUBS] ], INS[ |. (This can be
verified by looking at the Levenshtein distance pre-
fix matrix for strings ¥1.7 and y.) Each such edit
starts a suffix that completes the target, e.g. itis “e k
t” for SUBS[e] and “ k t” for SUBS[ |. Next, we use
SED to rank the permissible edits by cost-to-go. For
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each of the edits and their corresponding suffixes,
the expert needs to execute the edit (e.g. SUBS|[¢]
writes € and moves the attention to x5 = ¢) and
then decode SED with Viterbi on the the remaining
input and the suffix (both possibly modified by the
edit). In this way, we obtain that SUBS| | is the op-
timal action with the lowest cost-to-go (=negative
sum of the log probabilities of the edit and of the
Viterbi path) of 15.28 (vs 17.65 for SUBS[e], 21.09
for INS[e], 17.31 for DEL, and 17.31 for INS][ ]).?

Exploration This time, we also train the trans-
ducer with an aggressive exploration schedule:
psampling(i) = He%p(i), where 7 is the training
epoch number. After a couple of training epochs,
training configurations are generated entirely by

executing edit actions sampled from the model.

3 Submission details

We train separate models for each language on the
official training data and use the development set
for model selection.* Our submission does not use
any additional lexical resources.

For most of the models, we employ Unicode
decomposition normalization (NFKD)’ as a data
preprocessing step. Importantly, this helps decom-
posing Unicode syllable blocks used e.g. in Hangul.

The size of the development set is rather small
(450 examples), and having examined the data, we
suspect that overly relying on the development set
for model selection might hurt generalization. For
example, the French development set contains three
exceptions to the “ill”’-/j/ equivalence; thus, a sin-
gle model that achieves a high score on the devel-
opment set might, in fact, be overfitting. To counter
this, we build an eleven-model-strong majority-
vote ensemble. Fortunately, training a neural trans-
ducer is fast as one epoch takes just about four
minutes on average on a single CPU, due to the
relatively small number of model parameters.

3This particular SED is trained on the French training data
for 3 EM epochs with Dirichlet prior o = 1e-05 for all edits.

*We train the SED model for 20 epochs of EM with o« =
0.25 for insertions and 0.5 for all other edits. We train the
neural transducer for a maximum of 60 epochs with a patience
of 12 epochs. We use mini-batches of size 5. We decode using
beam search with beam width 4.

>Using NFKD instead of NFD was a bit unfortunate be-
cause some superscript diacritics get normalized to their regu-
lar size. Luckily, as pointed out to us by Kyle Gorman, there is
a unique mapping from NFKD to NFC for the spaced output
format of this task. See http://www.unicode.org/reports/tr15/
for Unicode normalization forms.



CLUZH ENS. CLUZH WER AVG LSTM TF BEST BY OTHERS
LNG WER PER | #C #D | WER + A% 1 | WER | WER WER A,% PER A%
ady 27.11  6.27 0 1113032 197 -12 16.89 | 28.00 | 28.44 | 24.67 9 5.76 8
arm | 12.22 2.82 0 111473 076 -21 8.89 | 14.67 | 14.22 | 12.67 -4 291 -3
bul 23.33 4.70 0 113081 278 -32 13.78 | 31.11 | 34.00 | 22.22 5 4.70 0
dut 14.44 2.51 9 211830 144 -27 933 | 1644 | 15.78 | 13.56 6 236 6
fre 6.89 1.56 2 9] 812 054 -18 3.56 6.22 | 6.89 | 5.11 26 1.16 26
geo | 27.33 4.83 0 112911 0.86 -7 8.89 | 26.44 | 28.00 | 24.89 9 4.57 5
gre 1644 2.68 | 11 0]19.60 180 -19 733 | 18.89 | 18.89 | 14.44 12 242 10
hin 511 1.20 0 11 7.13 055 -40 2.67 6.67 | 9.56 | 5.11 0 120 0
hun 4.00 1.02 0 11| 477 060 -19 2.89 533 | 533 | 4.00 0 0.92 10
ice 9.11 1.90 0 111000 053 -10 578 | 10.00 | 10.22 | 9.11 0 1.83 4
jpn 6.00 1.58 0 11 7.19 030 -20 4.89 7.56 | 733 | 4.89 19 1.16 27
kor 28.44 4.88 0 112826 1.39 1 11.78 | 46.89 | 43.78 | 24.00 16 4.05 17
lit 18.67 3.27 0 112154 0.82 -15 14.22 | 19.11 | 20.67 | 18.67 0 3.38 -3
rum | 11.33 2.68 0 111366 1.11 -21 7.11 | 10.67 | 12.00 | 9.78 14 2.23 17
vie 1.56 0.35 0 11 1.60 0.21 2 089 467 | 7.56 | 0.89 43 0.27 23
AVG | 14.13 282 |15 95]1634 1.05 -16 793 16.84 | 17.51 | 12.93 8 2.59 8

Table 1: Overview of the test results. A gives relative error difference compared to our submission CLUZH.
#C=number of NFC models in the ensemble. #D=number of NFKD models in the ensemble. CLUZH WER
AvG=average WER, standard deviation, and relative error difference of the average computed over individual mod-
els. 1 =lower-bound on WER: correct if predicted by any individual model. LSTM=official seq2seq LSTM baseline.

TF=official seq2seq Transformer baseline. BEST BY OTHERS=best results of other systems for each language.

4 Results and Discussion

Our system ranks second among 23 submissions
by a total of nine teams (Table 1). It ties for first
place on four languages (Hindi, Hungarian, Ice-
landic, Lithuanian) and outperforms every other
submission for Armenian. It achieves strong gains
over the neural baselines.

Ensembling gains us 16% in error reduction com-
pared to test set averages—a substantial improve-
ment. We leave it for future work to see whether
dropout and a larger model size could be used in-
stead as effectively as ensembling. Unicode decom-
position normalization boosts the performance of
our Korean models.® On average, at least one model
predicts the output correctly for all but 7.93% of
all the words (1 )—Adyghe, Lithuanian, and Bul-
garian being the most difficult languages. For some
languages, WER standard deviation is high, likely
confirming our hypothesis that model selection on
the small-sized development set would lead to poor
generalization.

Error analysis Table 2 shows the most frequent
errors of our system for each language and helps to

%1n fact, in a post-submission analysis, we see a strong gain
from decomposition only for Korean (17 percentage points
on average). For the other languages, it has no impact on
performance on average.
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qualitatively assess their strongly varying error pro-
files. We take a closer look at the errors in French
and Korean. Additional lexical information could
improve our French models. E.g. the word’s lexical
category feature and/or morphological segmenta-
tion would probably help correctly transduce the
word-final “-ent” (adverb “vraiement” (truly) /...a/
vs verb “viennent” (they come), where the ending
is silent). Many errors in French are in English
borrowings.

We look in some detail at the errors on the Ko-
rean test data that all or almost all of the individ-
ual models of the ensemble make. As expected,
lexicalized phenomena contribute most of the er-
rors: vowel length (which is neither phonemic nor
phonetically realized in the speech of all except
elderly speakers (Sohn, 2001)) and tensification.
Vowel length is not indicated in Korean orthogra-
phy, and neither is tensification (with some excep-
tions). Knowing whether a word is an English bor-
rowing (e.g. A~ seksii’ (sex)) or whether a word
is a compound and where the morpheme bound-
ary lies (252 ch’osiing-tal (new moon)) could
help predict non-automatic tensification correctly
in a small number of cases ([seksu] vs *[s"...] and
[t ¢hosMumtal] vs *[...dal]).

"This uses McCune-Reischauer transliteration of Korean.



ady /e/17  2e/¢/9 §/5/8 €/93/7  jo/c/6 €/ /6 €/90/5 B/1/5 /e/5 a/a/5
arm | 2/0/17 ¢/o0/12 5/e/12 ae/¢/3  t/d/3 g/k"/2 fh/z/2 e/j/2 x/8/2 t/de3/1
bul r/t/26  0/5/22 o/a/14 a/e/12  o/e/9 €/3/9 a/e/7 1/1/5 ©/3/5 €/'/5
dut 2/e/9  e/jo/4 ar/a/4 er/o/4 a/ey/3 t/d/3 1/e/3  0/5/2 e/ee/2  n/m/2
fre e/0G/2  €/es/2 a/a/2 0/32/2 w/3/2 ejed/e/1 ¢/ekes/1 dep/o0/1 od/c/1 e/eer/1
geo | 1/i/103  i/1/48 X/X/5 Y/8/4  B/Yy/3 x/x/3 a/a/2  es/e/1

gre c/r/27 0/5/19 r/r/15 e/e/9 i/i/3 ne/e/2 ¢/i/2 m/m/2 emee/c/1 e/se/1
hin | e/0e/10 2e/¢/5 €/93/2 e/a/2 ¢/ /2 a/a/2 i/ii/1 efi/f/1 1/i/1 2/j/1
hun | §/3/3 ¢/i/3 eyienet/1 ¢/meve/1 m/ed/1  ts/xi/1 si/fes/1  he/c/1  eh/cf/1 o/e/1
ice /e/11 €/:/9 te/e/4 v/f/3 €/3/3 t/d/2 h/e/2 /M2 vey/uy/1 c/k/1
jpn e/5/8  €/5/6 e/:/3  Jewl/2  :/e0/2 wh/jeo/1  e/ee/1  wf/e/l 0:/4/1 sei/ti/1
kor €//72  :/e/18 9:/4/11 #/6/4  A/9:/4 d/t/4 g/k/3  e/ne/3 d/t/2 l/n/2
lit e/o/15  n/n/14  e/ay/12 Ve/8 /€7 0/2/7 €/:/6 €/'/5 e/®/3  ay/e/3
rum | o/e/8  /5/8 e/j/6 t/t/5  /ei/4 :/ej/3 i/i/3  e/ee/2 o/e/2 j/i/2
vie e/i/2  He/e/1 e/ee/1 we/e/1  “o/e/1  im/e/1 a/e/1 2/n/1 1/e/1 a/a/1

Table 2: Ten most frequent errors per language. Notation: prediction / gold / error frequency. e denotes whitespace.
Computed using the UTF-8 aware version of the ISRI Analytic Tools for OCR Evaluation.®

How good is SED policy? Somewhat surpris-
ingly, using SED as part of the expert policy results
in competitive performance. Yet, SED is a very
crude model (e.g. because of the lack of context,
when used as a conditional model, SED assigns
less probability to any edit sequence containing
insertions than the same sequence but with all the
insertions removed; this e.g. makes it unusable as a
standalone model for G2P). On top of this, we also
do not use learned roll-out, which would be recom-
mended when training with a sub-optimal expert
(Chang et al., 2015). We leave it for future work
to examine whether the neural transducer’s perfor-
mance on G2P would improve from replacing SED
with a more powerful model.

5 Conclusion

This presents the approach taken by the CLUZH
team to solving the SIGMORPHON 2020 Multi-
lingual Grapheme-to-Morpheme Conversion chal-
lenge. Our submission is based on our successful
SIGMORPHON 2018 system, which is a majority-
vote ensemble of neural transducers trained with
imitation learning. We adapt the 2018 system to
work on transduction problems with disjoint input
and output alphabets. We add substitution actions
(not available in previous versions of the system)
and employ a memoryless probabilistic finite-state
transducer to define the expert policy for the imi-
tation learning. We use majority-vote ensembling
to counter the overfitting to the small development
sets. These simple modifications result in a highly

8https://github.com/eddieantonio/ocreval
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competitive performance even without the use of
any exernal resources or learning a single multi-
lingual model. Our ensemble ranks second out of
23 submissions by a total of nine teams. Our error
analysis indicates that addressing many of the er-
rors requires additional information such as know-
ing the word’s lexical category, morphological seg-
mentation, or etymology. We will make our code
publicly available.
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